• 제목/요약/키워드: Regenerative burner

검색결과 16건 처리시간 0.023초

compact 축열 버너 개발 연구 (A Study on the Compact Regenerative Burner Development)

  • 동상근;이은경;양제복
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.248-255
    • /
    • 2004
  • For the compactness of regenerative combustion, self regenerative combustion and embedding regenerator inside furnace are proposed. The Self Regenerative burner system was developed to enhance thermal efficiency and Low Nox emission. In the twin regenerative system, two burner heads are generally used for preheating and exhausting combustion mode. But self regenerative burner system use only single nozzle body for regenerative combustion. Also two kind of regenerator, internal and external type, were designed to operate conveniently in both large and small furnace. According to test result, the self regenerative combustion system gives strong internal exhaust gas recirculation that reduce NOx emission significantly. NOx was measured as 50ppm(5% O2, 1290C furnace temperature). Also it is found that the fuel saving rate due to the self regenerative burner system reach to 30-40%. Thus it can be concluded that self regenerative mild combustion system appears to provide a reasonable regenerative burner for compactness and high performance as compared with conventional twin regenerative burner system. Also in the RT Application , compact twin regenerative burner was developed with the help of embedding regenerator inside furnace.

  • PDF

공업로용 무화염식 축열버너의 국산화 개발 (The Development of Flameless Regenerative Burner for the Industrial Furnaces)

  • 김원배;양제복
    • 한국연소학회지
    • /
    • 제15권2호
    • /
    • pp.27-33
    • /
    • 2010
  • Recently, much attention has been paid to utilizing highly preheated air up to $1,000^{\circ}C$ through waste gas in industrial furnaces. The regenerative burner technology has shown to provide significant reduction in energy consumption (up to 60%), downsizing of the equipment (about 30%) and lower emissions (about 30%) while maintaining high thermal performance of the system since 2000. The object of this study is to develop the flameless regenerative burner for industrial furnaces based on the FLOX(Flameless Oxidation) principle and it has been designed and manufactured as pilot scale. Performance tests are experimentally done and their results are discussed. They showed 1) a very good uniformity in temperature distribution, 2) about 100 ppm in NOx at the temperature $1,300^{\circ}C$, 3) about 95% in temperature efficiency. Besides, the regenerative burner has advantage in easy maintenance and high usage rate of regenerator due to the separate and portable type of heat exchanger.

세라믹스의 축열연소시스템 응용 (Ceramic Application for Regenerative Burner System)

  • 한동빈;박병학;김영우;배원수
    • 한국세라믹학회지
    • /
    • 제36권5호
    • /
    • pp.497-503
    • /
    • 1999
  • Recently regenerative burner system was developed and begins to be gradually used for better energy savings. Compared to conventional burner system the regenrative one has the several merits such as higher fuel efficiency light weigh of apparatus low harmful toxic gas and homogeneous heating zone etc. The regenerative material a very important component of the new regenerative burner system should possess the properties of low specific density higher surface area and high specific heat capacity. Ceramics is the best regenerative material because of stable mechanical properties even at high temperature and better thermal properties and excellent chemical stability. In this study alumina ball alumina tube 3-D ceramic foam and hoeycomb as regenerative materials were tested and evaluated. The computer silumation was conducted and compared to the result of field test. This paper is aimed to introduce a new application of ceramics at high temperature.

  • PDF

축열버너의 연소특성에 대한 실험적 연구 (An Experimental Study on Combustion Characteristics of Regenerative Gas Burner)

  • 양제복;김원배;노동순
    • 한국연소학회지
    • /
    • 제5권1호
    • /
    • pp.99-108
    • /
    • 2000
  • Regenerative burner is a product of new combustion technology for realizing higher thermal efficiency and lower emissions, moreover utilizing very high preheated air temperature up to $1,000^{\circ}C$. In this study the experimental study was carried out to find out a combustion characteristics breaking the old combustion concept. From the variation of configuration of gas nozzle and hot test on the temperature distribution and NOx, CO, it was found out that the performance of regenerative burner was better than that of existing burner, mainly due to the effect of internal gas recirculation.

  • PDF

자기축열식 저 NOx 연소기에서 배가스 재순환이 연소특성에 미치는 영향 (The Effect of Flue-gas Recirculation on Combustion Characteristics of Self Regenerative Low NOx Burner)

  • 강민욱;김종규;동상근;윤영빈
    • 한국연소학회지
    • /
    • 제8권1호
    • /
    • pp.17-24
    • /
    • 2003
  • The conventional regenerative system has a high thermal efficiency as well as energy saving using the high preheated combustion air. in spite of these advantages, it can not avoid high nitric oxide emissions. Recently, flameless combustion has received much attention to solve these problems. In this research, numerical analysis is performed for flow-combustion phenomena in the self regenerative burner. In this analysis we used Fluent 6.0 code. the that is developed for commercial use, Methane gas is used as a fuel and two-step reaction model for methane and Zeldovich mechanism for NO generation are used. the velocity of the preheated combustion air is used as a parameter and we analyze the characteristics of flow-field, temperature distributions and NO emissions. Due to the increased recirculation rate, the maximum temperature of flame is significantly increased and NOx emissions is reduced.

  • PDF

축열식 저 NOx 연소기의 배가스 재순환이 연소특성에 미치는 영향 (The effect of flue-gas recirculation on combustion characteristics of regenerative low NOx burner)

  • 강민욱;윤영빈;동상근
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.97-104
    • /
    • 2002
  • The conventional regenerative system has a high thermal efficiency as well as energy saving using the high preheated combustion air. in spite of these advantages, it can not avoid high nitric oxide emissions. Recently, flameless combustion has received much attention to solve these problems. In this research, numerical analysis is performed for flow-combustion phenomena in the self regenerative burner. In this analysis we used Fluent 6.0 code. the that is developed for commercial use, Methane gas is used as a fuel and two-step reaction model for methane and Zeldovich mechanism for NO generation are used. the velocity of the preheated combustion air is used as a parameter and we analyze the characteristics of flow-field, temperature distributions and NO emissions. Due to the increased recirculation rate, the maximum temperature of flame is significantly increased and NOx emissions is reduced

  • PDF

축열식 저 NOx 연소기의 배기가스 내부 재순환 유동에 대한 연구 (A Study on the Self Flue Gas Recirculating Flow of the Regenerative Low NOx Burner)

  • 김종규;강민욱;윤영빈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제23회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.17-26
    • /
    • 2001
  • Self flue gas recirculation flow is an effective method for low NOx emission in the regenerative low NOx burner. The object of this study is to analyze the self flue gas recirculating flow by varying jet velocity of the combustion air. Fuel and air flow rates are fixed and combustion air jet nozzle diameters are 13, 6.5 and 5mm. The stoichiometric line is obtained from the concentration of the fuel using an acetone PLIF technique. It is found that the self flue gas recirculating flow is entrained into that line using a two color PIV technique. As the jet velocity of combustion air is increased, the flue gas entrainment rate into the stoichiometric line is increased. This result suggests that NOx emission can be reduced due to the effects of flue gas which is lowering the flame temperatures.

  • PDF

축열식 저 NOx 연소기의 배기가스 내부 재순환 유동에 대한 연구 (A Study on the Self Flue Gas Recirculating Flow of the Regenerative Low NOx Burner)

  • 김종규;강민욱;윤영빈;동상근
    • 한국연소학회지
    • /
    • 제6권1호
    • /
    • pp.20-28
    • /
    • 2001
  • Self flue gas recirculation flow is an effective method for low NOx emission in a regenerative low NOx burner. The object of this study is to analyze self flue gas recirculating flow by varying the jet velocity of the combustion air. Fuel and air flow rates are fixed and combustion air jet nozzle diameters are 13, 6.5 and 5mm. The stoichiometric line is obtained from the concentration of fuel using the acetone PLIF technique. It is found that self flue gas recirculating flow is entrained into that line using the two color PIV technique. As the jet velocity of combustion air is increased, the flue gas entrainment rate into the stoichiometric line is increased. This result suggests that NOx emission can be reduced due to the effects of flue gas lowering the flame temperature.

  • PDF

고온공기이용 오일 연소기술 (An Experimental Study on Oil Combustion Technology with High Temperature Preheated Air)

  • 김원배;양제복
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.17-23
    • /
    • 2002
  • The objective of this study is to develop a new oil combustion technology concerning industrial furnaces and kilns, not only to save energy but also to reduce environmental emissions. Of many kinds of such technologies we chose the high temperature air combustion technology which was initiated by the British steel company in '80s and developed further by the American burner company "North American". In this study it was carried out to test regenerative burner experimentally and to have an applicability to industry. From the variation of configuration of gas nozzle and hot test on the temperature distribution and NOx, it was found out that the reduction of NOx was due to the effect of internal gas recirculation, which will be caused by air emitting velocity from burner nozzle.

  • PDF

버너의 위치에 따른 알루미늄 용해로내의 유동 및 열전달 (Flow and Heat Transfer along Burner Positions in Aluminium Pool Furnace)

  • 김진호;강덕홍;김기홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1207-1212
    • /
    • 2004
  • For the design of Aluminium pool furnace, position of burner and pool depth effects on flow and temperature field in Aluminium pool furnace are examined by the commercial computational code, CFD-ACE+. From the results, position of burner which is on the same face in side wall is better to distribute the flow field in Al furnace. That yields temperature to distribute more uniformly. And the burner position is on upper wall, fire frame reach pool surface. Customer must consider that, because it make Aluminium to oxidize.

  • PDF