• Title/Summary/Keyword: Regenerative braking energy

Search Result 98, Processing Time 0.021 seconds

A Study on the Circuit Composition and Characteristics Analysis for Heavy-Duty Vehicular Hybrid Hydraulic Driving System (대형 자동차 하이브리드 유압 구동시스템의 회로구성과 특성해석에 관한 연구)

  • 이재구;이재천;한문식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.197-204
    • /
    • 2004
  • An accumulator in hydraulic systems stores kinetic energy during braking action, and then that controls hasty surge pressure. An energy recovery system using accumulator seems to be advantageous for ERBS due to its high energy density. This study suggests a method to decide suitable accumulator volume for ERBS. The method is based upon energy conservation between kinetic energy of moving inertia and elastic energy of accumulator. The energy conversion was analyzed and a simple formula was derived. Also accumulator tests were conducted for different load mass and motor speed. A series of test work were carried out in the laboratory and the dynamic characteristics of the hydraulic motor system, such as the surge pressure and response time, were investigated in both brake action and acceleration action and these results show that the proposed design is effective for decision accumulator volume in ERBS.

Capacity Design of Accumulator in Hydraulic Hybrid Drive Brake System (유압 하이브리드 구동 시스템의 축압기 용량 설계)

  • 이재구;김정현;김성동
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.15-21
    • /
    • 2001
  • An accumulator in hydraulic systems stores kinetic energy during braking action, and then that controls hasty surge pressure. An energy recovery system using accumulator seems to be advantageous for ERBS due to its high energy density. This study suggests a method to decide suitable accumulator volume for ERBS. The method is based upon energy conservation between kinetic energy of moving inertia and elastic energy of accumulator. The energy conversion was analyzed and a simple formula was derived. A series of computer simulation was done to verify effectiveness of the formula. The results of the simulation work were compared with those of experiments and these results show that the proposed design is effective for decision accumulator volume in ERBS.

  • PDF

DEVELOPMENT OF FUEL CELL HYBRID ELECTRIC VEHICLE PERFORMANCE SIMULATOR

  • Park, C.;Oh, K.;Kim, D.;Kim, H.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.287-295
    • /
    • 2004
  • A performance simulator for the fuel cell hybrid electric vehicle (FCHEV) is developed to evaluate the potentials of hybridization for fuel cell electric vehicle. Dynamic models of FCHEV's electric powertrain components such as fuel cell stack, battery, traction motor, DC/DC converter, etc. are obtained by modular approach using MATLAB SIMULINK. In addition, a thermodynamic model of the fuel cell is introduced using bondgraph to investigate the temperature effect on the vehicle performance. It is found from the simulation results that the hybridization of fuel cell electric vehicle (FCEV) provides better hydrogen fuel economy especially in the city driving owing to the braking energy recuperation and relatively high efficiency operation of the fuel cell. It is also found from the thermodynamic simulation of the FCEV that the fuel economy and acceleration performance are affected by the temperature due to the relatively low efficiency and reduced output power of the fuel cell stack at low temperature.

Simulation of An Economical Run for High Speed Train (고속철도 차량의 경제 주행 시뮬레이션)

  • 황희수
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.161-168
    • /
    • 1998
  • This paper presents an simulation methdology for determining an economical running pattern for a high speed train which minimizes energy consumption under an given trip time margin. The economical running pattern is defined with an economical maximum speed in traction phase, a speed at the end of coasting and a speed at the end of regenerative braking alone in braking phase. An economical run for subways is also described. As a case study, the simulation is carried out fer an economical run of high speed NamSeoul-Pusan line, and the results described. To do this, train performance simulation program is built and extended to be able to find an economical running pattern and then to simulate the defined economical run.

  • PDF

Development and Test of Inverter for Regenerative Power of DC Traction Power Supply System (직류급전시스템의 회생 전력 활용을 위한 인버터 시험설비 개발 및 성능시험)

  • Kim, Joo-Rak;Han, Moon-Seob;Kim, Yong-Ki;Kim, Jung-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.254-259
    • /
    • 2009
  • DC transit system has been adopted in the metropolitan area, Korea since 1974. Electric multiple (EMU) in this system always reiterates that acceleration and retardation. When EMU decelerates using electric breaking, regenerative power occurs. Regenerative power can be consumed in vicinity EMU on the same line or in resistor. If DC transit system has inverter for reusing regenerative power, Energy efficiency in DC transit system and the replacement cycle of brake shoe in EMU will be increased and dust due to mechanical braking decreased. This paper present the developed inverter for regenerative power and its test equipment. Test for developed inverter is performed at test equipment and is divided into three items, which are regeneration mode, active filter mode, and system link test.

Numerical Analysis Research for Evaluating the Energy Efficiency of Electric Vehicles (전기자동차 에너지효율 평가를 위한 수치해석 연구)

  • Mingi Choi
    • Journal of ILASS-Korea
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • This paper is a numerical analysis study for evaluating the energy efficiency of electric vehicles. Currently, the methods for testing and evaluating the energy consumption efficiency of electric vehicles have limitations such as resources and time. Therefore, there is a need for research on developing models to predict the energy consumption efficiency of electric vehicles. In this study, a numerical analysis research is conducted to predict the energy efficiency of electric vehicles using a vehicle dynamics numerical analysis model. To validate the accuracy of the simulation model, it is compared the results of dynamometer tests with the simulation results and used the Unified Diagnostic Services (UDS) protocol to acquire internal data from the electric vehicle. It is ensured the reliability of the simulation model by comparing data such as motor speed, battery voltage, current, state of charge (SOC), regenerative braking power generation, and total driving distance of the test vehicle with dynamometer test data and simulation model results.

EFFICIENCY MEASUREMENT AND ENERGY ANALYSIS FOR A HEV BENCH TESTER AND DEVELOPMENT OF PERFORMANCE SIMULATOR

  • OH K.;KIM D.;KIM T.;KIM C.;KIM H.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.537-544
    • /
    • 2005
  • This paper presents the efficiency measurement and energy analysis for a parallel HEY. Using the HEV test rig, the efficiency of each powertrain component is measured for a given driving cycle including the regenerative braking system. Accompanied by the efficiency measurements, a detailed energy analysis is performed. Based on the efficiency measurement and energy analysis, a HEV performance simulator is developed. Using the simulator, the HEV performance is evaluated for a mild hybrid system. It is expected that the HEV simulator developed can be used to obtain further optimization potentials.

A Studies for Sequential Mode Change Control Algorithm of the Parallel Dual Converter of Using Thyristor for Supplying the Urban Railway DC Power (도시철도의 직류전력 공급을 위한 사이리스터를 사용한 병렬 듀얼 컨버터의 순차적 모드 전환 제어 알고리즘에 대한 연구)

  • Han, Sung-Woo;Kim, Sung-An;Cho, Yun-Hyun;Byun, Gi-Sig
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.511-519
    • /
    • 2016
  • This paper is proposed control algorithm for the using thyristor of the parallel dual converter for Urban railway power supply in order to return the regenerative power generated by regenerative braking in urban railway train. Conventional control algorithm of Thyristor dual converter for urban railway power supply has voltage variation within a control range of hysteresis band. The purposed control algorithm of the parallel thyristor dual converter is to maintain a constant voltage without voltage variation in accordance with variable load through the Sequential mode change. And the control algorithm need calculating optimum initial firing angle to consider magnitude of the load current slope. For this purpose, Proposed algorithm for sequential conversion mode of the dual converter was verified by applying for the simulation.

Effects of the Irradiated Current Mode PWM Controller of DC/DC Power Converter (DC/DC 전력 컨버터의 전류모드 PWM 제어기의 방사선 영향)

  • Lho, Young-Hwan;Hwang, Eui-Sung;Lho, Kyeoung-Su;Phouphanonh, Phouphanonh;Khamphoungeun, Khamphoungeun;Han, Chang-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.685-692
    • /
    • 2011
  • DC/DC switching power converters produce DC output voltages from different DC input sources. The converters can be used in regenerative braking of DC motors to return energy back in the supply, resulting in energy savings for the systems containing frequent stops. The current mode DC/DC converter is composed of a PWM (pulse width modulation) controller, a MOSFET, and inductor, etc. Pulse width modulation is applied to control and regulate the total output voltage. It is shown that the variation of threshold voltage at MOSFET and the offset voltage increase caused by radiation effects make the PWM pulse unstable. In the PWM operation, the missing pulses, the changes in pulse width, and a change in the period of the output waveform are studied by simulation program with integrated circuit emphasis (SPICE) and experiments.

  • PDF

Operation Modes of a Power Split Hybrid Electric Vehicle (동력 분기 하이브리드 전기 자동차의 운행 모드 시뮬레이션)

  • Ahn Kuk-Hyun;Cho Sung-Tae;Lim Won-Sik;Park Yeong-Il;Lee Jang-Moo
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.23-27
    • /
    • 2006
  • The power split hybrid powertrain is considered to be one of the most prospective configuration for the hybrid electric vehicle (HEV). Toyota Prius, representing this type of vehicle, showed outstanding performances in fuel efficiency, emission reduction and acceleration. The excellence is largely due to the fact that it utilizes almost all operation modes of HEV. Those modes include ZEV (Zero Emission Vehicle) driving, idle stop, fuel cut-off, power assist, active charging, regenerative braking and so forth. In this paper, a few of the mode operations were simulated using AVL Cruise. Also, control logics to operate the powertrain in each mode were developed. The states of powertrain components were displayed and analyzed. By controlling the three components (engine, motor and generator), it was possible to run the powertrain in several hybrid operation modes.

  • PDF