• 제목/요약/키워드: Regenerative Medicine

검색결과 406건 처리시간 0.021초

Inhibition of Growth and Induction of Differentiation of SMMC-7721 Human Hepatocellular Carcinoma Cells by Oncostatin M

  • Kong, N.;Zhang, X.M.;Wang, H.T.;Mu, X.P.;Han, H.Z.;Yan, W.Q.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권2호
    • /
    • pp.747-752
    • /
    • 2013
  • Oncostatin M (OSM) is a multifunctional cellular regulator acting on a wide variety of cells, which has potential roles in the regulation of gene activation, cell survival, proliferation and differentiation. Previous studies have shown that OSM can induce morphological and/or functional differentiation and maturation of many tumor cells. However, the action of OSM on the induction of differentiation of human hepatocellular carcinoma (HCC) has not been reported. Here, we investigated the effects of different concentrations of OSM on human HCC cell line SMMC-7721 growth, proliferation, cell cycling, apoptosis and differentiation in vitro. Cell growth was determined via MTT assay, proliferation by cell cycle analysis, apoptosis by flow cytometry, morphology by transmission electronic microscopy, and cell function by detection of biochemical markers. Our results demonstrated that OSM strongly inhibited the growth of SMMC-7721 cells in a dose-dependent manner, associated with decreased clonogenicity. Cell cycle analysis revealed a decreased proportion of cells in S phase, with arrest at G0/G1. The apotosis rate was increased after OSM treatment compared to the control. These changes were associated with striking changes in cellular morphology, toward a more mature hepatic phenotype, accompanied by significant reduction of the expression of AFP and specific activity of ${\gamma}$-GT, with remarkable increase in secretion of albumin and ALP activity. Taken together, our findings indicate that OSM could induce the differentiation and reduce cell viability of SMMC-7721 cells, suggesting that differentiation therapy with OSM offers the opportunity for therapeutic intervention in HCC.

Nanotechnology Biomimetic Cartilage Regenerative Scaffolds

  • Lim, Erh-Hsuin;Sardinha, Jose Paulo;Myers, Simon
    • Archives of Plastic Surgery
    • /
    • 제41권3호
    • /
    • pp.231-240
    • /
    • 2014
  • Cartilage has a limited regenerative capacity. Faced with the clinical challenge of reconstruction of cartilage defects, the field of cartilage engineering has evolved. This article reviews current concepts and strategies in cartilage engineering with an emphasis on the application of nanotechnology in the production of biomimetic cartilage regenerative scaffolds. The structural architecture and composition of the cartilage extracellular matrix and the evolution of tissue engineering concepts and scaffold technology over the last two decades are outlined. Current advances in biomimetic techniques to produce nanoscaled fibrous scaffolds, together with innovative methods to improve scaffold biofunctionality with bioactive cues are highlighted. To date, the majority of research into cartilage regeneration has been focused on articular cartilage due to the high prevalence of large joint osteoarthritis in an increasingly aging population. Nevertheless, the principles and advances are applicable to cartilage engineering for plastic and reconstructive surgery.

Allogeneic Transplantation of Mesenchymal Stem Cells from Human Umbilical Cord Blood

  • Lee, Jae-Kwon
    • Journal of Applied Biological Chemistry
    • /
    • 제50권4호
    • /
    • pp.187-195
    • /
    • 2007
  • The cord blood serves as a vehicle for the transportation of oxygen and nutrients to the fetus. In the past, the human cord blood has generally been discarded after birth. However, numerous studies have described the regenerative ability of the cord blood cells in various incurable diseases. The umbilical cord blood (UCB)-derived stem cells are obtained through non-invasive methods that are not harmful to both the mother and the fetus. Furthermore, the cord blood stem cells are more immature than the adult stem cells and expand readily in vitro. The mesenchymal stem cells (MSCs) have the capacity to differentiate in vitro into various mesodermal (bone, cartilage, tendon, muscle, and adipose), endodermal (hepatocyte), and ectodermal (neurons) tissues. This review describes the immunological properties of the human UCB-MSCs to assess their potential usefulness in the allogeneic transplantation for the regenerative medicine.

Quantitative evaluation of the molecular marker using droplet digital PCR

  • Shin, Wonseok;Kim, Haneul;Oh, Dong-Yep;Kim, Dong Hee;Han, Kyudong
    • Genomics & Informatics
    • /
    • 제18권1호
    • /
    • pp.4.1-4.6
    • /
    • 2020
  • Transposable elements (TEs) constitute approximately half of Bovine genome. They can be a powerful species-specific marker without regression mutations by the structure variation (SV) at the time of genomic evolution. In a previous study, we identified the Hanwoo-specific SV that was generated by a TE-association deletion event using traditional PCR method and Sanger sequencing validation. It could be used as a molecular marker to distinguish different cattle breeds (i.e., Hanwoo vs. Holstein). However, PCR is defective with various final copy quantifications from every sample. Thus, we applied to the droplet digital PCR (ddPCR) platform for accurate quantitative detection of the Hanwoo-specific SV. Although samples have low allele frequency variation within Hanwoo population, ddPCR could perform high sensitive detection with absolute quantification. We aimed to use ddPCR for more accurate quantification than PCR. We suggest that the ddPCR platform is applicable for the quantitative evaluation of molecular markers.

줄기세포와 약침요법 (Stem Cells and Herbal Acupuncture Therapy)

  • 권기록
    • 대한약침학회지
    • /
    • 제8권3호
    • /
    • pp.79-85
    • /
    • 2005
  • Stem cell therapy implies the birth of regenerative medicine. Regenerative medicine signify treatment through regeneration of cells which was impossible by existing medicine. Stem cell is classified into embryonic stem cell and adult stem cell and they have distinctive benefits and limitations. Researches on stem cell are already under active progression and is expected to be commercially available in the near future. One may not relate the stem cell treatment with Oriental medicine, but can be interpreted as the fundamental treatment action of Oriental medicine is being investigated in more concrete manner. When it comes to difficult to cure diseases, there is no boundary between eastern and western medicine, and one must be ready to face and overcome changes lying ahead.

Birth of a healthy infant after bone marrow-derived cell therapy

  • Patel, Nayana H;Jadeja, Yuvraj D;Patel, Niket H;Patel, Molina N;Bhadarka, Harsha K;Chudasama, Piyush N;Thakkar, Harmi R
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제48권3호
    • /
    • pp.268-272
    • /
    • 2021
  • Bone marrow-derived cell (BMDC) therapy has numerous applications as potential biological cells for use in regenerative medicine. Here, we present an original case of endometrial atrophy associated with genital tuberculosis in a woman who achieved a live birth with BMDC. This 27-year-old woman came to our center with endometrial atrophy and primary infertility. She had a past history of genital tuberculosis and amenorrhea. Her husband's semen quality was normal. The patient was counseled for hysteroscopy due to thin endometrium and advised in vitro fertilization (IVF) with donor eggs in lieu of poor ovarian reserve. Several attempts of IVF with hormone replacement therapy (HRT) were made, but the desired thickness of the endometrium was not achieved. Uterine artery injection of BMDC through interventional radiology was given, followed by HRT for three months, which resulted in improved endometrium. This was subsequently followed by IVF with donor egg. The treatment resulted in the conception and delivery of a 3.1-kg baby boy through lower segment caesarean section with no antenatal, intranatal or postnatal complications. Recently, there has been massive interest in stem cells as a novel treatment method for regenerative medicine, and more specifically for the regeneration of human endometrium disorders like Asherman syndrome and thin endometrium, which was the reason behind using this strategy for treatment.

Resveratrol enhances cisplatin-induced apoptosis in human hepatoma cells via glutamine metabolism inhibition

  • Liu, Zhaoyuan;Peng, Qing;Li, Yang;Gao, Yi
    • BMB Reports
    • /
    • 제51권9호
    • /
    • pp.474-479
    • /
    • 2018
  • Cisplatin is one of the most effective chemotherapeutic drugs used in the treatment of HCC, but many patients will ultimately relapse with cisplatin-resistant disease. Used in combination with cisplatin, resveratrol has synergistic effect of increasing chemosensitivity of cisplatin in various cancer cells. However, the mechanisms of resveratrol enhancing cisplatin-induced toxicity have not been well characterized. Our study showed that resveratrol enhances cisplatin toxicity in human hepatoma cells via an apoptosis-dependent mechanism. Further studies reveal that resveratrol decreases the absorption of glutamine and glutathione content by reducing the expression of glutamine transporter ASCT2. Flow cytometric analyses demonstrate that resveratrol and cisplatin combined treatment leads to a significant increase in ROS production compared to resveratrol or cisplatin treated hepatoma cells alone. Phosphorylated H2AX (${\gamma}H2AX$) foci assay demonstrate that both resveratrol and cisplatin treatment result in a significant increase of ${\gamma}H2AX$ foci in hepatoma cells, and the resveratrol and cisplatin combined treatment results in much more ${\gamma}H2AX$ foci formation than either resveratrol or cisplatin treatment alone. Furthermore, our studies show that over-expression of ASCT2 can attenuate cisplatin-induced ROS production, ${\gamma}H2AX$ foci formation and apoptosis in human hepatoma cells. Collectively, our studies suggest resveratrol may sensitize human hepatoma cells to cisplatin chemotherapy via gluta${\gamma}H2AX$mine metabolism inhibition.

3D 프린팅 기술의 조직공학 및 재생의학 분야 응용 (3D Printing Technology and Its Application on Tissue Engineering and Regenerative Medicine)

  • 이준희;박수아;김완두
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제1권1호
    • /
    • pp.21-26
    • /
    • 2013
  • 본 논문에서는 최근 미래 신산업 혁명을 주도할 유망기술로 각광 받고 있는 3D 프린팅 기술과 이를 이용한 조직공학 및 재생의학 분야의 응용 기술을 살펴보았다. 한국기계연구원에서는 3D 프린팅 기술을 바탕으로 독자적인 3D 바이오프린팅 장비를 설계 및 제작하였으며, 개발된 3D 바이오프린팅 장비를 이용하여 다양한 분야에 적용이 가능한 3D 형상의 조직공학용 스캐폴드를 제작하였다. 또한 세포와 생체재료를 3D로 직접 프린팅 할 수 있는 세포 프린팅 기술을 개발하였으며, 이는 인공장기 개발분야의 원천 기술로 조직공학 및 재생의학 분야에 3D 프린팅 기술이 활용될 수 있는 기반을 확립하였다.

Co-expression of Human Proteins (IL-10, TPO and/or Lactoferrin) into Milk of Cross-Breed Transgenic Mouse

  • Zheng, Zhen-Yu;Lee, Hyo-Sang;Oh, Keon-Bong;Koo, Deog-Bon;Han, Yong-Mahn;Lee, Kyung-Kwang
    • Reproductive and Developmental Biology
    • /
    • 제32권1호
    • /
    • pp.45-49
    • /
    • 2008
  • We have previously produced transgenic (TG) mice expressing the human lactoferrin (hLF), interleukin-10 (hIL-10), and thrombopoietin (hTPO) proteins in the milk. In this study, we examined whether simple crossbreeding between two kids of a single transgenic mouse can produce double transgenics co-expressing two human proteins.. The hLF male, and the hIL-10 male were crossbred with the hIL-10 and hTPO females, and the hTPO female, respectively. PCR analysis for genotyping showed 32%, 23% and 24% double transgenic rates for hLF/hIL-10, hLF/hTPO, and hIL-10/hTPO transgenes, respectively. We analyzed the expression levels of the human proteins from double transgenic mice and compared those with their single transgenic siblings. All double transgenic co-expressed two human proteins at comparable levels to singles', unless hTPO was not co-expressed: for hLF, 1.1 mg/ml in hLF/hIL-10, whereas 0.5 mg/ml in hLF/hTPO; for hIL-10, 4.1 mg/ml in hIL-10/hLF, whereas 1.4 mg/ml in hIL-10/hTPO. Ihe downregulation of hTPO to half level of singles' was observed in double transgenic mice. The possible reason why hTPO co-expressed might lead to down-regulation of another human protein was discussed. These results suggested that double transgenic generated by crossbreeding between two singles' could be useful system for bioreactor.

NFI-C Is Required for Epiphyseal Chondrocyte Proliferation during Postnatal Cartilage Development

  • Lee, Dong-Seol;Roh, Song Yi;Choi, Hojae;Park, Joo-Cheol
    • Molecules and Cells
    • /
    • 제43권8호
    • /
    • pp.739-748
    • /
    • 2020
  • Stringent regulation of the chondrocyte cell cycle is required for endochondral bone formation. During the longitudinal growth of long bones, mesenchymal stem cells condense and differentiate into chondrocytes. Epiphyseal chondrocytes sequentially differentiate to form growth-plate cartilage, which is subsequently replaced with bone. Although the importance of nuclear factor 1C (Nfic) in hard tissue formation has been extensively studied, knowledge regarding its biological roles and molecular mechanisms in this process remains insufficient. Herein, we demonstrated that Nfic deficiency affects femoral growth-plate formation. Chondrocyte proliferation was downregulated and the number of apoptotic cell was increased in the growth plates of Nfic-/- mice. Further, the expression of the cell cycle inhibitor p21 was upregulated in the primary chondrocytes of Nfic-/- mice, whereas that of cyclin D1 was downregulated. Our findings suggest that Nfic may contribute to postnatal chondrocyte proliferation by inhibiting p21 expression and by increasing the stability of cyclin D1 protein.