• Title/Summary/Keyword: Regenerative Evaporative Cooler

Search Result 21, Processing Time 0.024 seconds

Cycle Simulation of a Desiccant Cooling System with a Regenerative Evaporative Cooler (재생형 증발식 냉각기를 이용한 제습 냉방시스템의 성능해석)

  • 이재완;이대영;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.566-573
    • /
    • 2004
  • Comparison of the cooling performance is provided between the desiccant cool-ing systems incorporating a direct evaporative cooler and a regenerative evaporative cooler, respectively. Cycle simulation is conducted, and the cooling capacity and COP are evaluated at various temperature and humidity conditions. The COP of the system with a regenerative evaporative cooler and the regeneration temperature of 6$0^{\circ}C$ is evaluated 0.65 at the outdoor air condition of 35$^{\circ}C$ and 40% RH. This value is found about 3.4 times larger than that of the system with a direct evaporative cooler. Furthermore, incorporating a regenerative evaporative cooler eliminates the need for deep dehumidification in a desiccant dehumidifier that is necessary to achieve low air temperature in the system with a direct evaporative cooler. Subsequently, the regenerative evaporative cooler enables the use of low temperature heat source to regenerate the dehumidifier permitting the desiccant cooling system more beneficial compared with other thermal driven air conditioners.

Performance Simulation of a Ventilation System Adopting a Regenerative Evaporative Cooler (재생증발식 냉방기를 이용한 환기 냉방시스템의 성능해석)

  • Chang, Y.S.;Lee, D.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.8-15
    • /
    • 2011
  • Cooling load reduction was analysed of a ventilation system adopting a regenerative evaporative cooler. The regenerative evaporative cooler is a kind of indirect evaporative cooler which cools the air down to its inlet dewpoint temperature in principle without change in the humidity ratio. The regenerative evaporative cooler was found able to cool the ventilation air to $18{\sim}21^{\circ}C$ when the outdoor condition ranges $25{\sim}35^{\circ}C$ and 0.01~0.02 kg/kg. When the outdoor humidity ratio is lower than 0.018 kg/kg, the regenerative evaporative cooler was found to provide cooling performance enough to compensate the ventilation load completely and to supply additional cooling as well. Energy simulation during the summer was carried out for a typical office building with the ventilation system using the regenerative evaporative cooler. The results showed that the seasonal cooling load can be reduced by about 40% by applying the regenerative evaporative cooler as a ventilation conditioner. The reduction was found to increase as the outdoor temperature increases and the outdoor humidity ratio decreases.

Effects of performance analysis of a desiccant cooling system with a direct evaporative cooler in the regeneration process (재생 입구 직접증발냉각기 적용이 제습냉방시스템 성능에 미치는 영향)

  • Dash, Ulziiutas;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.633-638
    • /
    • 2009
  • In this study the performance analysis and cooling capacity of desiccant cooling system incorporating regenerative cooler and direct evaporative cooler in the regeneration air inlet were investigated on the condition of low regeneration temperature and time rotation 180s and area ratio of regeneration to dehumidification section 0.7. The cooling capacity and COP are evaluated at various effectiveness values of the direct evaporative cooler or the regenerative evaporative cooler. As either of effectiveness of the regenerative and direct evaporative coolers of desiccant cooling system increases, both the cooling capacity and COP increase, but effectiveness value of regenerative cooler gives the opposite effect on the system performance. It is found that effectiveness of regenerative cooler less than 0.7 shows the optimum cooling capacity.

  • PDF

Performance Test for a Horizontal Regenerative Evaporative Cooler (수평형 재생증발식 냉방기의 성능시험)

  • Song, Gwi-Eun;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.621-626
    • /
    • 2006
  • Regenerative evaporative cooling is known as an environment-friendly and energy efficient cooling method. A regenerative evaporative cooler (REC) consisting of dry and wet channels is able to cool down the air stream below the inlet wet-bulb temperature. In the regenerative evaporative cooler, the cooling effect is achieved by redirecting a portion of the air flown out of the dry channel into the wet channel and spraying water onto the redirected air. In this study, a horizontal regenerative cooler is considered. In the horizontal regenerative cooler, the flow direction of evaporating water has a right angle to the flow direction of supply air. This difference was investigated with visualization technique and simplified 2-module performance test was done in a thermo-environment chamber. Optimum design configuration is changed due to the wet channel which are easily fully covered with evaporating water and block the air flow inside the channel. Applying the optimized fin configuration design with the highly wetting surface treatment, a regenerative evaporative cooler was fabricated and tested to Identify the cooling performance improvement and operation characteristics. From the experimental results at the intake condition of $32^{\circ}C$ and 50% RH, the supply temperature was measured to be around $23.4^{\circ}C$. The cooling effectiveness based on the inlet dewpoint temperature was evaluated 73% which is almost close to the design expectation.

  • PDF

Performance Comparison between Indirect Evaporative Cooler and Regenerative Evaporative Cooler made of Plastic/Paper (플라스틱/종이 재질의 간접 증발 소자와 재생 증발 소자 성능 비교)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.88-98
    • /
    • 2016
  • The Korean summer is hot and humid, and air-conditioners consume considerable amounts of electricity. In such cases, the simultaneous use of indirect evaporative coolers may help reduce the sensible heat and save electricity. In this study, heat transfer and pressure drop characteristics of indirect or regenerative evaporative coolers made from plastic/paper are investigated. The results showed that heat and mass transfer model based on the ${\epsilon}-NTU$ method predicted the indirect evaporation efficiencies, cooling capacities and pressure drops adequately. Both for indirect or regenerative evaporative cooler, the indirect evaporation efficiency increased with increasing dry channel inlet temperature or relative humidity. The indirect evaporation efficiency of the regenerative evaporative cooler was larger than that of the indirect evaporative cooler.

Study on the Counterflow Regenerative Evaporative Cooler with Finned Channels (대향류 핀삽입형 재생증발식 냉방기 연구)

  • Choi, Bong-Su;Hong, Hi-Ki;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.447-454
    • /
    • 2008
  • The regenerative evaporative cooler(REC) is to cool a stream of air using evaporative cooling effect without an increase in the humidity ratio. In the regenerative evaporative cooler, the air can be cooled down to a temperature lower than its inlet wet-bulb temperature. Besides the cooling performance, for practical application of the regenerative evaporative cooler, the compactness of the system is also a very important factor to be considered. In this respect, three different configurations, i.e., the flat plate type, the corrugated plate type, and the finned channel type are investigated and compared for the most compact configuration. The optimal structure of each configuration is obtained individually to minimize the volume for a given effectiveness within a limit of the pressure drop. Comparing the three optimal structures, the finned channel type is found to give the most compact structure among the considered configurations. The volume of the regenerative cooler can be reduced to 1/8 by adopting the finned channel type as compared to that of the flat plate type.

Small-Capacity Solar Cooling System by Desiccant Cooling Technology (태양열 이용 소용량 제습냉방시스템)

  • Lee, Dae-Young;Kwon, Chi-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.154-156
    • /
    • 2008
  • A prototype of the desiccant cooling system with a regenerative evaporative cooler was built and tested for the performance evaluation. The regenerative evaporative cooler is to cool a stream of air using evaporative cooling effect without an inc6rease in the humidity ratio. It is comprised of multiple pairs of dry and wet channels and the evaporation water is supplied only to the wet channels. By redirecting a portion of the air flown out of the dry channel into the wet channel, the air can be cooled down to a temperature lower than its inlet wet-bulb temperature at the outlet end of the dry channels. Incorporating a regenerative evaporative cooler eliminates the need for deep dehumidification in the desiccant rotor that is necessary to achieve low air temperature in the system with a direct evaporative cooler. Subsequently, the regenerative evaporative cooler enables the use of low temperature heat source to regenerate the dehumidifier permitting the desiccant cooling system more beneficial compared with other thermal driven air conditioners. At the ARI condition with the regeneration temperature of $60^{\circ}C$, the prototype showed the cooling capacity of 4.4 kW and COP of 0.75.

  • PDF

Cooling Performance of a Counterflow Regenerative Evaporative Cooler with Finned Channels (대향류 핀삽입형 재생증발식 냉방기의 냉방성능)

  • Moon, Hyun-Ki;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.462-469
    • /
    • 2008
  • A regenerative evaporative cooler has been fabricated and tested for the evaluation of cooling performance. The regenerative evaporative cooler is a kind of indirect evaporative cooler comprised of multiple pairs of dry and wet channels. The air flowing through the dry channels is cooled without any change in the humidity and at the outlet of the dry channel a part of air is redirected to the wet channel where the evaporative cooling takes place. The regenerative evaporative cooler fabricated in this study consists of the multiple pairs of finned channels in counterflow arrangement. The fins and heat transfer plates were made of aluminum and brazed for good thermal connection. Thin porous layer coating was applied to the internal surface of the wet channel to improve surface wettability. The regenerative evaporative cooler was placed in a climate chamber and tested at various operation condition. The cooling performance is found greatly influenced by the evaporation water flow rate. To improve the cooling performance, the evaporation water flow rate needs to be minimized as far as the even distribution of the evaporation water is secured. At the inlet condition of $32^{\circ}C$ and 50%RH, the outlet temperature was measured at $22^{\circ}C$ which is well below the inlet wet-bulb temperature of $23.7^{\circ}C$.

Effects of Individual Components on the System Performance in a Desiccant Cooling System (제습냉방시스템에서 요소성능이 시스템성능에 미치는 영향)

  • Chang, Young-Soo;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.10
    • /
    • pp.687-694
    • /
    • 2007
  • Cycle simulation is peformed for two types of the desiccant cooling system incorporating a regenerative evaporative cooler. The cooling capacity and COP are evaluated at various effectiveness values of the regenerative evaporative cooler, the desiccant rotor and the sensible heat exchanger. As either of the effectiveness of the regenerative evaporative cooler or the humidity effectiveness of the desiccant rotor increases, both the cooling capacity and COP increase, but the enthalpy leak ratio gives the opposite effect on the system performance. It is found that COP of cycle A mainly depends on the humidity effectiveness of the desiccant rotor, while for cycle B enthalpy leak ratio of desiccant rotor has the major impact on COP. The effect of the sensible heat exchanger on the cooling capacity is small about 1/10 compared with those of other components.

Effects of Performance Analysis of a Desiccant Cooling System with a Direct Evaporative Cooler in the Inlet of Regeneration Process (재생입구 직접증발냉각기 적용이 제습냉방시스템 성능에 미치는 영향)

  • Dash, Ulziiutas;Sung, Sang-Chul;Oh, Myung-Do;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.5
    • /
    • pp.328-335
    • /
    • 2010
  • The purpose of this study is to make an analysis of influence on the cooling capacity and COP of a desiccant cooling system with a regenerative evaporative cooler when a direct evaporative cooler was applied to the inlet of regeneration process of this system. We used cycle simulation in order to analyze the performance of this system. From the cycle simulation, we knew that the optimal rotation time of desiccant rotor was between 160s and 220s and hardly ever affected cooling capacity of desiccant cooling system when this system was operated at the outdoor air condition of $35^{\circ}$ and 40% RH and low regeneration temperature of $60^{\circ}$. Also there was optimal area ratio of regeneration to dehumidification between 0.7 and 1.0. Our results showed that it had a small effect on the system’s cooling capacity to install direct evaporative cooler at the inlet of regeneration process.