• Title/Summary/Keyword: Regeneration rate

Search Result 705, Processing Time 0.031 seconds

Industrial Waters of Taegu City and on the Objection of Iron for Water Softening (大邱市의 工業用水와 鐵의 軟化障害에 關하여)

  • Lee, Dae-Soo;Hong, Soon-Yung
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.117-121
    • /
    • 1962
  • The waters throughout Taegu area for 87 points were analysed and according to the analytical data, following unfavorable characteristics for industrial uses were given: (1)Shows strong hardness, (2)Has high ratio of ignition residue to evaporation residue, (3) pH value is over 7, (4) Contains considerable quntities of iron.And then investigated the exchange rate and regeneration level of iron ion using cation exchange resin, Lewatit KS.When the hard water containing 2.2 ppm of iron with 18.4 ppm of calcium and 6.2 ppm of magnesium was passed through the ion exchange resin under $3cc/cm^2/min$ in exhaustant flow rate, exchange rate of iron reached to 42% after 300 hours flow. The exchange efficiency shows abrupt decreasing in initial stage of flow up to 100 hours flow. The exchanger which contains iron was regenerated with 10% sodium hydroxide aqua solution under SV (space velocity) 4. By this method, 57% of iron was eliminated from exchanger while calcium and magnesium are removed as much as 85% and 87% respectively.

  • PDF

Experimental Study on PSA Process for High Purity CH4 Recovery from Biogas (바이오가스로부터 고순도 CH4 회수를 위한 PSA 공정의 실험적 연구)

  • Kim, Young-Jun;Lee, Jong-Gyu;Lee, Jong-Yeon;Kang, Yong-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.4
    • /
    • pp.281-286
    • /
    • 2011
  • The objective of this study is to optimize the four-bed six-step pressure swing adsorption(PSA) process for high purity $CH_4$ recovery from the biogas. The effects of P/F(purge to feed) ratio and cycle time on the process performance were evaluated. The cyclic steady-states of PSA process were reached after 12 cycles. The purity and recovery rate of product gas, pressure and temperature changes were constant as the cycle repeated. It was shown that the P/F ratio gave significant effect on the product recovery rate by increasing the amount of purge gas in purge and regeneration step. The optimal P/F ratio was found to be 0.08. As the cycle time increased, the product purity decreased by increasing the feed gas flow rate. It was found that the optimal operating conditions were P/F ratio of 0.08 and total cycle time of 1,440 seconds with the purity of 97%.

Test Bed Studies with Highly Efficient Amine CO2 Solvent (KoSol-4) (고효율 습식 아민 CO2 흡수제(KoSol-4)를 적용한 Test bed 성능시험)

  • Lee, Ji Hyun;Kwak, No-Sang;Lee, In Young;Jang, Kyung Ryoung;Jang, Se Gyu;Lee, Kyung Ja;Han, Gwang Su;Oh, Dong-Hun;Shim, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.267-271
    • /
    • 2013
  • Test bed studies with highly efficient amine $CO_2$ solvent (KoSol-4) developed by KEPCO research institute were performed. For the first time in Korea, evaluation of post-combustion $CO_2$ capture technology to capture 2 ton $CO_2$/day from a slipstream of the flue gas from a coal-fired power station was performed. Also the analysis of solvent regeneration energy was conducted to suggest the reliable performance data of the KoSol-4 solvent. For this purpose, we have tested 5 campaigns changing the operating conditions of the solvent flow rate and the stripper pressure. The overall results of these campaigns showed that the $CO_2$ removal rate met the technical guideline ($CO_2$ removal rate: 90%) suggested by IEA-GHG and that the regeneration energy of the KoSol-4 showed about 3.0~3.2 GJ/$tCO_2$ which was, compared to that of the commercial solvent MEA (Monoethanolamine), about 25% reduction of regeneration energy. Based on these results, we could confirm the good performance of the KoSol-4 solvent and the $CO_2$ capture process developed by KEPCO research institute. And also it was expected that the cost of $CO_2$ avoided could be reduced drastically if the KoSol-4 is applied to the commercial scale $CO_2$ capture plant.

Anther Culture Efficiency affected by Growth Condition and Pre-treatment Methods in Barley (보리 생육환경 및 전처리 방법별 약배양 효율)

  • Park, Tae Il;Kim, Young Jin;Jeoung, Sun Ok;Kim, Hyun Soon;Seo, Jae Hwan;Yun, Song Joong
    • Korean Journal of Breeding Science
    • /
    • v.40 no.1
    • /
    • pp.31-38
    • /
    • 2008
  • This experiment was carried out to improve the anther culture efficiency of barley (Hordeum vulgare L.). Callus induction rates from anther cultures of the five domestic naked barley and four unhulled varieties ranged from 0 to 5.6%, and plant regeneration rate to callus was 30.4% in the donor plants grown in a greenhouse during winter, among which the green plant regeneration rates ranged from 0 to 4.4%. Plant regeneration rate was 30.4% in the donor plants grown in a greenhouse during winter, whereas 21.3% in the normal field condition in spring. In addition, callus induction rates were 19.2% in plants grown in a normal field and 7.2% in drought-stressed condition, respectively. Being Considered the anther culture efficiency affected by the sampling time, the optimum sampling stage of anthers was 3~4 days before heading when the length between the 1st and 2nd auricles reaches 5 to 10 cm and at the uninucleate of pollen which the tip of the 2nd auricle aligns with the middle of panicle in the leaf sheath. Best callus induction rates came from the anthers stored at $4^{\circ}C$ for 3 weeks in a 10 to 15 cm diameter polyethylene bag with 5 to 10 panicles and Duwonchapssalbori and Saessalbori showed the higher induction rate of 4.8% and 1.7%, respectively.

Study on the Performances of Air Flow Fate Effect on a Structured Packed Tower at Adiabatic Condition in a Liquid Lithium Chloride Cooling System

  • Bakhtiar, Agung;Choi, K.H.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.404-408
    • /
    • 2009
  • The liquid desiccant air-conditioning system has been proposed as an alternative to the conventional vapor compression cooling systems to control air humidity. The complete system of liquid desiccant air-conditioning system is consisted two main components those are humidifier (regeneration) and dehumidifier. Humidifier part is connected to the load when summer season which is the air condition is hot and humid have to be turned into comfort condition on human. This paper purpose is performances study of air flow rate effect on a structured packed tower on cooling and dehumidifier system using liquid lithium chloride as the desiccant. Experimental apparatus used in this present study is consisted of three components those are load chamber, packed tower and chiller. Load chamber’s volume is $40m^3$, and packed tower dimension is cubic with length 0.4m occupied with packed column. Totally, 15 experimental has done using 5 times repeat on each variable of air velocity that varying on 2m/s, 3m/s and 4m/s with other conditions are controlled. Air inlet initial temperature and relative humidity are set respectively on $30^{\circ}C$ and 52%, desiccant flow rate is 0.63 kg/s, desiccant temperature is $10^{\circ}C$ and desiccant concentration is 0.4. The result of this study shows that averagely, the moisture removal rate and the heat transfer rate are influenced by the air velocity. Higher air velocity will increase the heat transfer and decreasing the moisture removal rate. At adiabatic condition the air velocity of 2 m/s respectively is having the higher moisture removal rate acceleration then the air velocity of 3m/s and 4 m/s until the steady state condition.

  • PDF

ULTRASTRUCTURAL STUDY FOR VEIN REGENERATION AFTER MICROVASCULAR ANASTOMOSIS IN RABBIT FEMORAL VEIN (가토 대퇴정맥 미세정맥문합술 후 정맥 문합부 재생에 관한 미세조직학적 연구)

  • Rho, Hong-Seop;Kim, Chul-Hwan;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.4
    • /
    • pp.340-349
    • /
    • 2007
  • Free flap transplantation with microvascular anastomosis has been successfully performed by development of surgical technique, materials and postoperative monitoring equipments of flap. But success rate of microvascular anastomosis is influenced by various factors, and failure rate is about 5-10%. The most influential factor for success rate is surgical technique and other factors that influence failure of microvascular anastomosis are ischemic time of free flap, thrombus formation of anastomosis region and vascular spasm. In this study, vascular patency and thrombus formation in experimental micro-venous anastomosis, and endothelial repair were observed with histologic analysis, scanning electron microscopy, transmission electron microscopic examination. The results were obtained as follows: 1. In vascular patency test in 30 minute and 7 days after micro-venous anastomosis with heparin irrigation, all of 12 anastomosis site were good vascular patency. 2. In thrombus formation in 2 weeks group(Experimental I), 2 site of 6 cases were observed thrombus, and in 4 weeks group(Experimental II), 1 site of 6 cases were observed thrombus. 3. In histologic examination, normal vein(Control Group) showed continued internal elastic lamina, well formed thick smooth muscle layer and connective tissue. The group of 2 weeks after microvenous anastomosis(Experimental I) showd locally recovered internal lamina, discontinued internal lamina, disorganized smooth muscle cells and granulation tissue around suture silk. In the group of 4 weeks after micro-venous anastomosis(Experimental II), anastomosis site showed almostly continued internal lamina, disorganized smooth muscle cells and cicartrized tissue around suture silk. 4. In scanning electron microscope examination in 2 weeks(Experimental I) after micro-venous anastomosis, mesh fibrin formation showed near to endothelial cells, and in 4 weeks after micro-venous anastomosis(EXperimental II), numerous blood cells and fibrin mesh formation was seen associated with irregular endothelial cell arrangement. 5. In transmission electron microscope examination in 2 weeks after micro-venous anastomosis(Experimental I), irregular arrangement of smooth muscle cells was seen adjacent to collagenized tissue around suture silk. In 4 weeks after micro-venous anastomosis(Experimental II), denuded venous wall composed of relatively well arranged smooth muscle cells was covered by endothelial cells, but fibroblast cells and foreign body giant cells near to suture silk was remained. From the results obtained in this study, results of good vascular patiency and anti-thrombotic effect of heparin were obtained as a local irrigation solution, and repair of venous endothelial cell was observed in 2 weeks after micro-venous anastomosis.

BIOLOGICAL EFFECTS OF pH CONCENTRATION ON CULTURED HUMAN PERIODONTAL LIGAMENT CELL ACTIVITY IN VITRO (수소이온 농도의 변화가 배양 인체 치주인대 세포의 활성에 미치는 영향)

  • Kim, Seong-Ho;Park, Kui-Woon;Yoo, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.3
    • /
    • pp.539-556
    • /
    • 1995
  • Periodontal therapeutic modalities should be re-establishing and regenerating the periodontal tissue previously lost to the disease. To achieve periodontal regeneration, periodontal ligament cells must selective migrate to the deneded root surface, attached and proliferated it. Local pH concentration is one of the most factors that periodontal regeneration. The aims of this study were to examine on biological effects of pH to the human periodontal ligament cells in vitro, especially on the cell morphology, attachment, activity, vitality and viability. Human periodontal ligament cells were cultured from extracted tooth for non-periodontal reason. Immediately after extraction, any soft tissue adhering to the cervical parts of the roots was carefully removed with a sterile curette. To produce different pH levels in the media, Eagle's MEM was adjusted from pH 6.6 to 8.2 in 0.2 intervals with 1 M NaOH and 1 N HCl. After cultivation, Then, Periodontal ligament cells were cultured at pH ranging from 6.6-8.2. attachment assay was done at 1, 2 day incubation and activity assay was done at 1, 2, 3 day incubation. The experiments were evaluated by scaning electron microscopic techniques (HITACHIX-650 Scaning Electron Microanalyzer, Tokyo, Japan), MTT assay, and the cultured periodontal ligament cells were fixed in neutral formalin for 24 hours and immunohistochemically processed by PCNA for proliferating ability. The surviving cells in the medium showed slightly increased volume and widening intercellular distances at low concentration of pH than control group (pH 7.4), and apparently shrinkage at high concentration of pH than control group (pH 7.4). The results of the statistical analysis from the experiment on attachment, vitality and viability were as follows. Attachment of periodontal ligament cells at 1st and 2nd day, similar attachment rate of low concentration pH compared with control value (pH 7.4). But above pH 8.0, attachment rate were statistically significant decrease from control value(P<0.05). Periodontal ligament cell's activities were maximum at pH 7.6 by MTT assay. Similar with control value at low concentration of pH. But, the activities were statistically significant decrease at high concentraration of pH(P<0.05). Cellular proliferating rate (PCNA index) were statistically significant decrease from control value at low and high concentration of pH(p<0.05). This results suggested that hjgh concentration pH, in other words, alkali pH was cytotoxic effects on human periodontal ligament cells in vitro.

  • PDF

Effects of Operating Conditions on Adsorption and Desorption of Benzene in TSA Process Using Activated Carbon and Zeolite 13X (활성탄과 제올라이트 13X 충진탑을 사용한 TSA 공정에서 조업조건이 벤젠의 흡착 및 탈착에 미치는 영향)

  • Jung, Min-Young;Suh, Sung-Sup
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.594-603
    • /
    • 2018
  • The effects of operating conditions such as benzene concentration, nitrogen flow rate, steam flow rate, and bed temperature on TSA process were experimentally investigated as a potential VOC removal technology using two kinds of beds packed with activated carbon and zeolite 13X. The TSA cycle studied was composed of the adsorption step, steam desorption step, and drying and cooling step. At 2% benzene concentration, the total adsorption amounts of zeolite 13X and activated carbon were 4.44 g and 3.65 g, respectively. Since the zeolite 13X has a larger packing density than that of the activated carbon, the larger benzene amount could be adsorbed in a single cycle. Increasing the water vapor flow rate to 75 g/hr at 2% benzene concentration reduced the desorption time from 1 hr to a maximum of 33 min. If the desorption time is shortened, the drying and cooling step period can be relatively increased. Accordingly, the steam removal and bed cooling could be sufficiently performed. The desorption amounts increased with the increase of the bed temperature. However, the energy consumption increased while the desorption amount was almost constant above $150^{\circ}C$. In the continuous cycle process, when the amount of remained benzene at the completion of the regeneration step increased, it might cause a decrease in the working capacity of the adsorbent. The continuous cycle process experiment for zeolite 13X showed that the amount of remained benzene at the end of regeneration step maintained a constant value after the fourth cycle.

A Study on the H2 Oxidation over Pt/TiO2, SO2 Poisoning and Regeneration (Pt/TiO2의 HS 산화반응 및 SO2 피독과 재생 방안 연구)

  • Lee, Dong Yoon;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.731-736
    • /
    • 2019
  • In this article, Pt/TiO2 was manufactured in the form of powder and honeycomb, and the influence of SO2, which is a poisonous substance to catalyst, and regeneration method were investigated. The catalytic activity of Pt/TiO2 before and after the exposure to SO2 was also compared. The initial activity of Pt/TiO2 was proportional to the injected H2 concentration (1~5%). And the optimum temperature of the catalyst and conversion rate of H2 were 183 ℃ and 95%, respectively. It was confirmed that when exposing 2,800 ppm of SO2 to the powder and honeycomb Pt/TiO2, the performance of catalyst was not measurable and also 0.69% sulfur (S) remained on the catalyst surface. As a result of the cleaning and heat treatment for the poisoning catalyst, the activity of the powder catalyst exhibited a conversion rate of H2 greater than 96%. Whereas, the honeycomb catalyst showed a conversion rate of H2 greater than 95% when it was regenerated through the heat treatment of H2 or air atmosphere.

Characteristics of Low Temperature Desorption of Volatile Organic Compounds from Waste Activated Carbon in Cylindrical Cartridge (원통형 활성탄 카트리지 내 폐활성탄의 휘발성 유기화합물 저온 탈착 특성)

  • Kang, Sin-Wook;Lee, Seongwoo;Son, Doojeong;Han, Moonjo;Lee, Tae Ho;Hong, Sungoh
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.79-84
    • /
    • 2021
  • In this study, the waste activated carbon used in the painting process was filled into a cylindrical cartridge and the characteristics of desorption by low temperature gas were investigated. Adsorption and desorption experiments of toluene with activated carbon were conducted to determine the flow rate of desorption. In an experiment where desorption was performed while changing conditions at flow rates of 1, 2 and 4 ㎥ min-1, it was determined that 2 ㎥ min-1 was appropriate due to the high THC concentration and desorption time. In the early stage of the desorption of waste activated carbon, 2-butanone and MIBK (methyl isobutyl ketone) with a low boiling point were generated at a high rate in the gas component, and after that, the concentration of THC decreased and the BTX was desorbed at a high rate. The total calorific value of the gas component generated during the desorption of waste activated carbon was 316 kcal kg-1. From repeating the regeneration of waste activated carbon with toluene five times, it was observed that the iodine value and the specific surface area were relatively lower than that of new activated carbon. In the desorption experiment where two cylindrical cartridges were connected in series, the maximum THC concentration was about 470 ppm.