• Title/Summary/Keyword: Regenerated Production

Search Result 123, Processing Time 0.027 seconds

Production of Human Serum Albumin in Chloroplast-Transformed Tobacco Plants

  • Ko, Suk-Min;Kim, Hyun-Chul;Yoo, Byung-Ho;Woo, Je-Wook;Chung, Hwa-Jee;Choi, Dong-Woog;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.233-236
    • /
    • 2006
  • Human serum albumin (HSA) is the most abundant protein in plasma and is the most often used intravenous protein in many human therapies. However, HSA is currently extracted only from plasma because commercially feasible recombinant expression systems are not available. This study attempted to develop an efficient system for recombinant HSA production by chloroplast transformation of tobacco. A HSA cDNA was isolated from a cDNA library constructed with human liver tissue. Chloroplast transformation vectors were constructed by introducing various regulatory elements to HSA regulatory sequences. Vectors were delivered by particle bombardment into leaf explants and chloroplast-transformed plants were subsequently regenerated into whole plants. Southern blot analysis confirmed that the HSA cDNA was incorporated between rps12 and orf70B of the chloroplast genome as designed. Western blot analysis revealed that hyper-expression and increasing the stability of HSA were achieved by modification of the regulatory sequences using the psbA5'UTRs in combination with elements of the 14 N-terminal amino acids of the GFP and the FLAG tag. However, only plants transformed with the vector containing all of these elements were able to accumulate HSA.

In vitro Multiplication and Corm Production of Freesia hybrida 'Sunny Gold'

  • Jinjoo Bae;Jae-young Song;Woohyung Lee;Jung-ro Lee;Munsup Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.62-62
    • /
    • 2022
  • Freesia has been an important worldwide cut flower because of its fragrance, long vase life and the wide color range of the flower. The conventional propagation methods by seeds and corms have many disadvantages such as shorter inflorescences with fewer numbers of florets, a reduction in cut flower quality and the accumulation of plant viruses in corms by successive cultivation. Therefore, the conventional propagation systems in Freesia needs to be replaced with tissue cultures to overcome the disadvantages. This study explored an efficient multiplication protocol using the combination of plant growth regulators (PGRs) for developed cultivar 'Sunny Gold'. The combination between 6-benzylaminopurin (BA) and α-naphthalene acetic acid (NAA) did not produce new shoots but developed enlarged roots. BA only treatments and the combination between BA and kinetin treatments were effective on shoot multiplication. The highest average number of shoots was 5.3 in the presence of 3 mg/L BA and 0.5 mg/L kinetin. To produce corms and cormlets, proliferated shoots were subcultured on 1/2 Murashige and Skoog (MS) medium supplemented with 90 g/L sucrose, 1 g/L charcoal and 7 g/L plant agar and placed at 4℃ in the dark for 6 months. The small size of corms and comlets were produced. The average number of regenerated comlets was 2.75 per shoot. The results showed that shoot multiplication is more efficient than cormlet regeneration for in vitro freesia proliferation.

  • PDF

Production of New Regenerated Plants by Anther Culture of the Hybrids of Italian ryegrass X Tall fescue (이탈리안 라이그라스 X 톨페스큐 속간 교잡종의 약배양 기법을 이용한 식물체 생산)

  • Kim, K.Y.;Kang, K.M.;Choi, K.J.;Jang, Y.S.;Lim, Y.C.;Kim, M.J.;Kim, J.G.;Kim, W.H.;Park, G.J.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.22 no.4
    • /
    • pp.273-278
    • /
    • 2002
  • Several regenerated plants were obtained from anther culture of the hybrid lines of Italian ryegrass (Lolium multiflorum Lam.) X Tall fescue (Festuca arundinacea Schreb.). When the anthers of the hybrid plants were incubated for 20 days on callus induction medium, MS medium containing 30 g/$\ell$ of sucrose, 2 mg/$\ell$ of NAA and 1 mg/$\ell$ of kinetin, their calli were induced. The mean ratio of callus induction was 11.6 percent, and the mean of callus weight was 9.1 mg/callus/anther. When the calli of the hybrid plants were incubated for 50 days on plant regeneration medium, MS medium containing 30 g/$\ell$ of sucrose, 1 mg/$\ell$ of NAA and 2 mg/$\ell$ of kinetin, the hybrid plants were regenerated. The mean ratio of plant regeneration was 27.1 percent and line Hyb-1 showed highest regenerabillity with the frequency of 30.2 percent.

Production and Characterizations of Somatic Hybrids between Brassica campestris L. ssp pekinensis and Brassica of oleracea L. var capitata

  • Lian, Yu-Ji;Lim, Hak-Tae
    • Journal of Plant Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.33-38
    • /
    • 2001
  • Protoplasts isolated from inbred lines of Brassica oleracea L. var capitata (cabbage) and Brassica campestris L. ssp. pekinensis (Chinese cabbage) were fused by PEG-mediated method, and somatic hybrid cells were differentiated into plants. for the identification of somatic hybrid plants, ploidy level, plant morphology, and cytological analysis were performed. All of the regenerated plants derived from fused protoplasts were shown to be 2X-4X, or higher ploidy level, presumably due to somatic hybridization or chromosome doubling. The morphology of leaves, petioles, and flowers showed an intermediate phenotype between Chinese cabbage and cabbage. Chromosome numbers in these somatic hybrids ranged mostly from 33 to 38. According to Genomic in situ hybridization (GISH) pattern, signals from both fusion parents of B.campestris or B.oleracea were detected in different colors when chromosomes of putative somatic hybrids were observed.

  • PDF

Genetic Analysis on Bioconversion of Aniline to Acetaminophen in Streptomyces fradiae

  • Jin, Hyung-Jong;Park, Ae-Kyung;Lee, Sang-Sup
    • Archives of Pharmacal Research
    • /
    • v.15 no.1
    • /
    • pp.35-40
    • /
    • 1992
  • S. fradiae showed the highest acetanilide p-hydroxylation activity in the tested strains. And S. fradiae was well characterized genetically, especially with respect to tylosin production. Two mutants, which lost hydroxylation, were isolated in 140 regenerated colonies from protoplasts. In restriction enzyme digesion of total DNAs, isolation of giant linear plasmid DNA and determination of antibiotic resistances to chloramphenicol, tylosin, hygromycin B and mitomycin C, any differences among mutants and a wild type strain were not detected. These facts suggest that lesion on 6, 000 Kb chromosomal DNA was responsible for the lack of p-hydroxylation activity induced by protoplast formation and regeneration.

  • PDF

Triterpenoid Saponin Contents of the Leaf, Stem and Root of Codonopsis lanceolata (더덕 잎, 줄기, 뿌리 부위의 Triterpenoid 사포닌 함량)

  • Kim, Ji Ah;Moon, Heung Kyu;Choi, Yong Eui
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Codonopsis lanceolata (Campanulaceae) has been used in traditional medicines, as its roots contain several kinds of 3,28-bidesmosidic triterpenoid saponin with high medicinal values. In this study, we induced hairy root-derived transgenic plants of C. lanceolata and analyzed triterpenoid saponins from the leaf, stem and root. Transgenic plants were regenerated from the hairy roots via somatic embryogenesis. The saponins are lancemaside A, B and E, foetidissimoside A, and aster saponin Hb. Transgenic plants contained richer triterpenoids saponin than wild-type plants. Major saponin lancemaside A was the most abundant saponin in the stem from transgenic-plant, $4.76mg{\cdot}1^{-1}dry$ stem. These results suggest that transgenic plants of C. lanceolata could be used as medicinal materials for the production of triterpene saponins.

Regeneration from Storage Root Disk Culture of Purple Sweet Potato

  • Park, Hyejeong;Park, Hyeonyong
    • Korean Journal of Plant Resources
    • /
    • v.28 no.3
    • /
    • pp.363-369
    • /
    • 2015
  • Sweet potato has low regeneration capacity, which is a serious obstacle for the fruitful production of transgenic plants. Simple and rapid regeneration method from storage root explants of purple sweet potato (Ipomoea batatas L.) was investigated. The embryogenic callus was observed from 4 cultivars and its highest rate was induced at 1 μM 2,4-D after 5 weeks of culture. Result revealed that a low concentration of 2,4-D and low light intensity was important factors for embryogenic callus formation. After subculture on medium with 5 μM ABA for 4 days, subsequently, occurred the regeneration of shoots within 4 weeks when these embryogenic callus was transferred onto the MS hormone free medium. Regenerated shoots were developed into platelets, and grown normal plants in the greenhouse. We developed a simple and quickly protocol to regenerate plantlets in storage root explants of purple sweet potato. This regeneration system will facilitate tissue culture and gene transfer research of purple sweet potato.

Elimination of SPFMV from Virus-infected Sweet Potato Plants through Apical Meristem Culture

  • Kim, Young-Seon;Jeong, Jae-Hun;Park, Jong-Suk;Eun, Jong-Seon
    • Plant Resources
    • /
    • v.7 no.3
    • /
    • pp.200-205
    • /
    • 2004
  • Sweet potato infected with a viral disease (SPFMV) showed irregular chlorotic patterns, so called feathering associated with faint or distinct ring spots that have purple-pigmented borders. SPFMV was eliminated from sweet potato plants using meristem tip culture. MS medium supplemented with BAP (2mg/L) and NAA (0.05 mg/L) was used for shoot proliferation and 1/2 MS medium for rooting of the plants. Highest percentage of regenerated plants (60%) was obtained from the optimum size (0.3-0.5mm) meristem tips. Of these, 60% plants were found negative for SPFMV by RT-PCR. Virus detection by RT-PCR was found to be a reliable method. Meristem-tip culture to produce SPFMV-free quality sweet potato and virus detection by RT-PCR is an efficient, time saving and reliable method for production of SPFMV-free tissue culture raised plants.

  • PDF

Transformation of Birdsfoot trefoil by BcHSP17.6 Gene using Agrobacterium tumefaciens (BcHSP17.6 유전자 도입에 의한 버즈풋 트레포일의 형질전환)

  • 김기용;성병렬;임용우;최기준;임영철;장요순;정의수;김원호;김종근
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.3
    • /
    • pp.145-150
    • /
    • 2001
  • This study was conducted to obtain the transformed birdsfoot trefoil (Lotus corniculatus L.) plants with BcHSP17.6 gene using Agrobacterium turnefaciens LBA4404 and we confirmed transformed gene from the regenerated birdsfoot trefoil plants. The expression vector, pBKH4 vector, harboring BcHSP17.6 gene was used for production of transgenic birdsfoot trefoil plants. The callus of birdsfoot trefoil was cocultivated with Agrobacteriurn turnefaciens and transformed calli were selected on kanamycin-containing SH-kc medium to regenerate into plants. The transformed birdsfoot trefoil plants were produced 4 momths after cultivation on BOi2Y medium. The transgenic birdsfoot trefoil plants were analyzed by isolation of genomic DNA and genomic Southern hybridization using a -32P labelled BcHSPl7.6 fragments. (Key words : Birdsfoot trefoil, Transgenic plant. BcHSP17.6 gene, Callus induction, Plant regeneration)

  • PDF

Production of Transgenic Petunia hybrida cv. Rosanpion Using Agrobacterium-mediated Transformation

  • Ko, Jeong-Ae;Kim, Young-Sook;Kim, Myung-Jun;Kim, Hyun-Soon
    • Plant Resources
    • /
    • v.4 no.1
    • /
    • pp.36-40
    • /
    • 2001
  • Transgenic Petunia hybrida cv. Rosanpion was produced by Agrobactepium tumefaciens LBA4404 harboring a binary vector pBI 121 containing $\beta$-glucuronidase (gus) and neomycin phosphotransferase (nptII). For genetic transformation, leaf discs were precultured on MS medium supplemented with 0.5 mg/L NAA and 1.0 mg/L BA (MNB) for 2 days and cocultured for 15 mins with A. tumefaciens. For selection of transformant, leaf discs were transferred to fresh MNB containing 50 mg/L kanamycin and 500 mg/L cefotaxime. Eighteen plants were regenerated and four were confirmed by PCR for detection of gus and nptII gene integrated into the nuclear genome of petunia ‘Rosanpion’. Using this transformation system, we expect that transgenic petunia ‘Rosanpion’ incorporating a useful gene can be produced.

  • PDF