• Title/Summary/Keyword: Refused plastics

Search Result 4, Processing Time 0.018 seconds

Thermo-Chemical Treatment Characteristics of Recycling Oil Obtained from Pyrolysis of Refused Plastics (폐플라스틱 열분해(熱分解) 재생연료유(再生燃料油)의 열화학적(熱化學的) 처리(處理) 특성(特性))

  • Lee, In-Gu;Kim, Jae-Ho
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2006.09a
    • /
    • pp.39-54
    • /
    • 2006
  • An experimental study on the hydro-cracking of recycling oil obtained from refused plastics was performed for up-grading of its fuel characteristics. Major experimental parameters were reaction temperature ($300^{\circ}C{\sim}700^{\circ}C$) and presence of catalysts (Al-Si, activated carbon, zeolite). The effect of the experimental parameters on the liquid product characteristics such as flash point, kinetic viscosity, and solid content was investigated. The hydro-cracking reactions of the recycling oil at $300^{\circ}C{\sim}400^{\circ}C$ improved the oil characteristics of the liquid products. Activated carbon was revealed as a stable and active catalyst in the hydro-cracking reaction at a temperature range investigated.

  • PDF

Comparison of Waste-Plastic Recycling Methods for Environmental Assessment (환경성 평가를 위한 폐플라스틱 재활용 방법들의 비교)

  • Park, Chan-Hyuk;Choi, Suk-Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.2
    • /
    • pp.101-111
    • /
    • 2006
  • In the present work, life cycle assessments (LCA) of various waste-plastic recycling methods (material recycling, refused derived fuel (RDF), recycling on furnace, and pyrolytic oil production) were carried out to investigate their impacts on the environment. Six types of impacts were considered. While the impact on global warming was found to be significant, the impact on others were negligible. The impact values on the global warming caused by the material recycling, RDF, and the recycling on furnace were negative, which implied that their impacts could be noticeably reduced when waste-plastic are used as an alternative to newly drawn plastics. The pyrolytic oil production, however, showed positive value, which may be due to the carbon dioxide produced during electric power generation. The pyrolytic oil production had the largest impact on the ozone layer destruction, which was due to ozone depleting substances produced from the process itself. These results can be used as a useful data for the enhancement of waste-plastic recycling.

  • PDF

Pyrolysis oil refining by Fly-ash absorption (Fly-ash 흡착기법을 이용한 열분해유 정제)

  • Im, EunJung;Kim, SungHyun;Chun, ByungHee;SunWoo, Hwan;Jeong, IckCheol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.222-222
    • /
    • 2011
  • Plastic product is increasing by the growth of its demand and most of refused plastics are incinerated or reclaimed. However, the refused plastic is not easily decomposed and has the environmental problem with its various toxic gas in case of incineration. Therefore, many countries such as USA, Japan, Germany and other developed industrial countries as well as Korea are interested in studying the recyclable resource of refused plastic. The macromolecular waste pyrolysis has the advantage of collecting of raw materials in high price and can at least get fuel gas or oil with high heat capacity. It also discharges low waste gas and low toxic gas including SOx, NOx and HCl heavy metals. However, pyrolyzed oil includes enough excess unsaturated hydrocarbons to form tar, which can cause the nozzle of engines to plug when pyrolyzed oil is used as fuel. Activated carbon was proven to have prominent adsorption capability among the other adsorbents that were mainly composed of carbon. This study examined the possibility of application in activated charcoal of its solid formation by analysing the feature of pyrolysis which is one of the chemical recycling methods and getting chemical analysis of the product and activated energy. Analyze the element of the oil produced by pyrolysis using GC-MS. The experiment of tar adsorption using fly-ash showed that fly-ash improved the optical intensity of pyrolyzed oil and decreased oxygen compounds in the pyrolyzed oil.

  • PDF

Development of Separation System with Rotating Rakes for Recovery of Film-based Plastics (기계식(機械式) 회전(回轉)레이크를 이용(利用)한 생활계(生活界) 폐기물(廢棄物) 필름류(類) 선별장치(選別裝置) 개발(開發)에 관(關)한 연구(硏究))

  • Lee, Byung-Sun;Na, Kyung-Duk;Han, Sang-Kuk;Choi, Woo-Zin;Park, Eun-Kyu
    • Resources Recycling
    • /
    • v.19 no.3
    • /
    • pp.24-32
    • /
    • 2010
  • In the present work, a new separation system with rotating rakes has been developed to separate the film-based plastics from the recyclable materials, and environment assessment is also carried out during operation of the device. Capacity of the device was about 5.3 ton/hr at a rakes rotation speed of 26.0 rpm (the number of rakes in the 1st, 2nd and 3rd trials were 39, 52 and 48, respectively) and a belt conveyor speed of 38.5m/min, which satisfied the initial design capacity (5.0 ton/hr). Recovery ratio and purity of the plastic films were 92.6% and 96.5%, respectively at a rotation speed of 28 rpm. The levels of noise, vibration and particulate emission were below material standard regulatory limits. Plastic refused fuel (RPF) was also prepared with the recovered films. The calorific value and chlorine content of the prepared RPF were 9,740 kcal/kg and 0.18%, respectively which satisfy the first grade quality specification of the Korean RPF standard. As a result of this work, recovery of energy resources from the municipal solid waste is possible by adopting the developed separation device.