• Title/Summary/Keyword: Refuse Derived Fuel

Search Result 61, Processing Time 0.029 seconds

A Study on Combustion Characteristics of Refuse Derived Fuel(RDF) in Various Incinerators (연소방식별 폐기물 고형연료(RDF)의 연소특성 연구)

  • Kim Woo-Hyun
    • Resources Recycling
    • /
    • v.15 no.1 s.69
    • /
    • pp.46-57
    • /
    • 2006
  • For the development of combustion technology of RDF(refuse derived fuel), combustion characteristics are examined in bubbling fluidized bed, circulating fluidized bed, continuos combustor and batch type combustor. The characteristics of combustion and exhaust gas has been compared and analyzed in many type of combustion facilities, which has been utilized as basic data for the advanced research of specified RDF combustion facility. Stable combustion has been observed in bubbling and circulating fluidized bed from controled operating condition like the proper feeding rate and superficial gas velocity. In circulating fluidized bed, concentration of NOx has been increased with the operating condition by the fuel-NO and oxygen reaction and $SO_2$ can be considered not to be produced in RDF fluidized bed from very low concentration in flue gas. HCl concentration is 36.4 ppm as average value and lower than standard emission value, but the counter plan is needed. Shaped RDF and fluff RDF have been compared in continuos combustor and batch type combustor and shaped RDF shows benefit for the stable heat recovery and gas emission shows similar value and characteristics.

Study on the HCl Exhaust and Reduction Characteristics of Refuse-Derived Fuel (폐기물(廢棄物) 고형연료(固形燃料)(RDF) 연소시의 염화수소(鹽化水素) 발생 및 저감 특성 연구)

  • Nho, Nam-Sun;Kim, Kwang-Ho;Jeon, Sang-Goo;Lee, Kyong-Hwan;Shin, Dae-Hyun;Suh, Jee-Mi;Park, Hyo-Nam
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.70-74
    • /
    • 2005
  • 최근에 국내에서 활발히 보급되기 시작한 폐기물 고형연료(Refuse-Derived Fuel : RDF)에 적합한 HCl 배출 저감설비의 개발에 필요한 기본적인 자료를 확보하기 위한 첫 번째 단계로서 RDF 연소시의 HCl 생성 및 저감 특성에 대한 실험실적인 기초 실험을 수행하였다. 개당 무게가 $2{\sim}3\;g$ 정도인 RDF 시료는 실험실적 방법으로 제조하였고, Ca 계통의 흡수제를 선택하여 RDF 중의 Cl 함량 및 원료 조성에 따른 HCl 배출농도 및 흡수제 사용량, Ca/Cl 몰비에 따른 HCl 제거효율, 연소 조건별 생성물질, 반응온도별 HCl 배출농도 및 회재의 Cl 함량, 흡수제별 HCl 저감효율 변화 등을 살펴보았다. 또한 40 kg/hr과 200 kg/hr의 용량을 가진 RDF 연소용 실험설비에서 측정된 HCl 배출농도, RDF의 Cl 함량, 회재 종류별 Cl 함량 분포 등을 기초실험 결과와 비교분석하였다.

  • PDF

Study on applicability of RDF in Municipal Waste Landfill Site (생활폐기물매립장에서의 RDF 적응가능성에 대한 연구)

  • Kim, Jung-Kwon
    • Journal of Environmental Science International
    • /
    • v.18 no.10
    • /
    • pp.1181-1187
    • /
    • 2009
  • Results for application of RDF(Refuse Derived Fuel) to selected wastes in metropolitan and small and medium cities are as follows. The physical characteristics of waste are paper, plastic, food waste, and so on. The proximate analysis in P city showed 20.2% of moisture, 71% of combustible material, and 8.8% of ash on annual average. That in G city showed 31.6% of moisture, 59.5% of combustible material, and 8.9% of ash. Ultimate analysis in P city showed 52.04% of carbon, 7.02% of hydrogen, 28.80% of oxygen, 0.66% of nitrogen, and 0.09% of sulfur. Heating value was 3,363 kcal/kg. Ultimate analysis in G city showed 50.85% of carbon, 6.56% of hydrogen, 29.86% of oxygen, 0.79% of nitrogen, and 0.12% of sulfur. Heating value in the G city was somewhat lower than that in the P city with 2,632 kcal/kg. Thus, application of RDF in metropolitan city was more effective than that in small and medium cities. Heating value in mixture for the P city was lower than that in waste of the volume rate waste charge system alone by 143 kcal/kg. In proximate analysis, moisture, and combustible material were likely to be more adequate to RDF.

Reducing technology of fuel-NOx generation using fuel-rich/-lean catalytic combustion (연료(燃料) 과농(過濃)/희박(稀薄) 조절(調節)의 촉매연소(觸媒燃燒)에 의한 Fuel-Nox 저감(低減) 기술(技術))

  • Kang, S.K.;Lee, S.J.;Ryu, I.S.;Shin, H.D.;Han, H.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.55-62
    • /
    • 2006
  • A two-step fuel-rich/fuel-lean catalytic combustion seems to be one of the most effective methods to control simultaneously the NO generation and the hydrocarbon (HC) conversion from fuel-bound nitrogen. By controlling equivalent air ratio for maintaining fuel-rich and fuel-lean condition over each catalytic layer, space velocity, inlet temperature, and catalyst component, the HCand ammonia conversion efficiency higher than 95% could be achieved, with ammonia conversion to NO remaining below 5%. The experimental results wouldbe applied to the combustion of land fill gas and to gasified refuse-derived fuels as a method of minimizing NO generation.

  • PDF

Solid fuel combustion in a fluidized bed - Characteristics of a lab-scale combustor and experimental parameters (고체 연료의 유동층 연소 - 시험 연소로 특성 및 실험 인자 설정)

  • Choi, Jin-Hwan;Park, Young-Ho;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.236-245
    • /
    • 2000
  • A laboratory scale fluidized bed reactor was developed to treat the combustion characteristics of some fuels (wood, paper sludge, refuse derived fuel). The aims were to introduce the means of experiment and interpretation of the results and finally determine the particle characteristics on the pyrolysis and combustion process of the fuel. A single particle combustion process in the fluidized bed was closely observed. Understanding experimental facility characteristics and determining parameters were also carried out. The fuel combustion processes were observed by carbon conversion rate, recovery and mean carbon conversion time. They were estimated with the CO, $CO_2$ gas concentration monitored at the exit of the combustor. Fuel drying and pyrolysis process were governed by temperature distribution in the fuel particle. There was a significant overlap of the drying and devolatilization. However, transition process from devolatilization to char combustion seemed to be determined by mechanical solidity of the fuel particle after devolatilization process.

  • PDF

A Study on the Promotion of Combustible Construction Waste Recycling (가연성 건설폐기물의 자원화 제고를 위한 방안)

  • Park, Ji-Sun;Lee, Sea-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.89-95
    • /
    • 2009
  • The current enforce decree of "The Act on the Promotion of Construction Waste Recycling" divides seventeen kinds of construction wastes by property and configuration. Mixed construction waste, one of them classified by the enforce decree, is composed two more than justified construction wastes except refuse soil and rock. In construction wastes justified by enforce decree of this law, most refuse concrete and asphalt concrete of construction wastes are recycled. As well as refuse metal is separated, sorted from bulk them, and merchandised for value. Finally this is used the secondary manufactured products. Even though combustible construction wastes like refuse wood, plastics, fiber can be recycled RDF(Refuse derived fuel) or RPF(Refuse plastic fuel) because of high caloric value and low heavy metal but most of them are discharged as mixed construction waste and then treated by treated by incineration and landfill. Therefore, to control construction waste flow efficiently, construction wastes are classifies first combustible, incombustible, mixed combustible, incombustible and etc. in this study. The combustible waste is consisted refuse wood, plastics, fiber and etc. and incombustible waste contains refuse concrete, asphalt, and etc. Mixed construction is construction waste that can not separate from mixed waste bulk with different kinds.

  • PDF

Study on the Pyrolysis Kinetics of RDF(Refuse Derived Fuel) with Thermogravimetric Analysis (열중량 분석 기법을 통한 RDF의 열분해 특성 조사)

  • Kim, Dong-Won;Lee, Jong-Min;Kim, Jae-Sung
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.676-682
    • /
    • 2009
  • Devolatilization of the Refuse Derived Fuel(RDF) which is produced at WonJu in Korea was characterized in air atmosphere with variation of heating rate(10, 20 and $30^{\circ}C/min$) in TGA. The results of TG Analysis have shown that the pyrolysis and char combustion of the RDF occurred in the range of $350{\sim}700^{\circ}C$ depending on the heating rate. Activation energy of the RDF which was determined by using Friedman and Ozawa-Flynn-Wall method was in the range of 14.44~18.40 kcal/mol. Also, reaction order(n) and pre-exponential factors(A) were 1.219 and $3.02{\times}10^5$ by using Friedman method, respectively. In order to find out the devolatilization mechanism of the RDF, twelve solid-state mechanisms defined by Coats Redfern Method were tested. The results of the Coats Redfern Method have shown that chemical reaction is the effective mechanism by comparison with the value of the activation energy which was derived from the Friedman and Flynn-Wall-Ozawa method and correlation coefficient from twelve solid-state mechanisms of Coats Redfern Method. The solid state decomposition mechanism of the RDF was found to be a decelerated $F_1$ type, random nucleation with one nucleus on the individual particle.

A Study on the Optimal Management Option of the Disposal of Resources Found in Standard Plastic Garbage Bags (종량제봉투 내 폐자원에 대한 최적 처리방안 연구)

  • Park, Sang Jun;Kim, Eui Yong
    • Resources Recycling
    • /
    • v.23 no.5
    • /
    • pp.44-54
    • /
    • 2014
  • A standard plastic garbage bag which was discarded from Incheon Metropolitan City was composed of 4.5% recyclable resources (aluminum cans 0.2%, steel cans 2.5%, glass 1.8%), 92.5% resources with recoverable energy (papers 23.0%, plastics 15.5%, combustible etc. 54.0%) and 3.0% non-combustible etc. Recycling is more effective than landfilling for aluminum cans, steel cans, and glass. The energy recovery process using solid refuse fuel (SRF) is more effective than incineration for papers and plastics. Incineration is more effective than recycling for combustible etc. 2,068,948 Million Btu of total energy savings and 21,008 $MTCO_2E$ of total GHG reductions were obtained by the application of the proposed scheme. The total energy savings were equivalent to an economic benefit of 422 billion won per year. The total GHG reductions were equivalent to a GHG benefit of 4,119 passenger cars not running per year. The lower calorific value of the combustible materials was obtained to be 1,936 kcal/kg of papers, 5,079 kcal/kg of plastics and 2,462 kcal/kg of combustible other resources, respectively. If papers and plastics are properly mixed, the mixture can be used as SRF. The lower calorific value of combustible other resources does not meet the quality criteria for refuse derived fuel, therefore its components are inappropriate to used as solid refuse fuel.

A Study on the Lower Heating Values Forecast of Municipal Solid Wastes with the Heating Values of Physical Components (물리적 조성별 발열량을 이용한 도시고형폐기물 저위발열량 추정에 관한 연구)

  • 여운호
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.3
    • /
    • pp.13-18
    • /
    • 1994
  • Information on the heating values of municipal solid wastes is very important in evaluating the feasibility of incineration and RDF (Refuse Derived Fuel) manufacture. This paper describes the forecasting methods about the lower heating values of municipal solid wastes. The lower heating values are forecast by the heating values of physical components. The municipal solid wastes consist of paper, food wastes, textiles, plastics, wood and rubber (contained leather). These are the physical components of municipal solid wastes.

  • PDF