• Title/Summary/Keyword: Refrigerator evaporator

Search Result 53, Processing Time 0.022 seconds

Characteristics of Energy Consumption for a Household Refrigerator under Influence of Non-condensable Gases (가정용 냉장고의 불응축 가스량에 따른 소비 전력 특성)

  • Kim, Doo-Hyun;Hwang, Yu-Jin;Park, Jae-Hong;Chung, Seong-Ir;Jeong, Young-Man;Ku, Bon-Cheol;Lee, Jae-Keun;Ahn, Young-Chull;Bang, Sun-Wook;Kim, Seok-Ro
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.381-387
    • /
    • 2008
  • The presence of non-condensable gases as an additional thermal resistance inside a refrigerating circuit has been found for a general refrigerator, The effect of non-condensable gases was varied by controlling the injection amount of dry air into the refrigerating circuit to increase a thermal resistance. Energy consumption tests for the refrigerator were conducted under the various amounts of non-condensable gases. The tested refrigerating circuit was the household refrigerator. As the molar fraction of non-condensable gases was increased from 0% to 1.46%, the amount of energy consumption was found to increase up to 25%. The increase of the amount of non-condensable gases in refrigerating circuit was found to result in increasing the condensation temperature at the condenser and decreasing the evaporation temperature at the evaporator, which were presumably caused by the low specific heat and increased partial pressure of non-condensable gas.

Development of the Analysis Tool for Contribution from a Noise Source with LabVIEW (랩뷰를 이용한 소음원 기여도 분석 툴 개발)

  • Choi, Ki-Soo;Jeong, Wei-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.650-651
    • /
    • 2008
  • In this thesis, source identification tool for NI-PXI equipment is developed with LabVEIW. For the purpose of examining propriety of developed tool, simulation is performed with several signals that have different frequency range. After checking the coherence functions for concerned frequency domain, an experiment is conducted on an evaporator that cause the principal noise of a refrigerator.

  • PDF

A Study of Lorentz-Meutzner's Two Evaporator Refrigeration System Using Alternative Refrigerant Mixtures (대체혼합냉매를 사용하는 Lorentz-Meutzner의 이중 증발기 냉동 시스템의 성능에 관한 연구)

  • Park, Y.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.2
    • /
    • pp.123-136
    • /
    • 1992
  • A preliminary thermodynamic design model of two-evaporator refrigerator/freezer system is constructed. This system is based on Lorentz-Meutzner cycle using refrigerant mixtures. This model screens alternative refrigerant (R32, R125, R143a, R22, R134a, R152a, R124, R142b, R123) mixtures to select the best performance-giving refrigerant mixtures and its composition for the system. Also, it estimates the effects of cooling temperatures of intercoolers, evaporator's area ratio, cooling load ratio on the performance of the system. The COP of the system ranges from 1.4 to 1.6, which is superior to that of the single evaporator system charged with R12 by 13% to 29%. Among 15 mixtures, R22/R123, R143a/R123, R32/R142b, and R32/R124 (in the order of high COP) are most recommendable. For the case of R22/R123, R22 mass fraction more than 0.5(Load Ratio=1.0) or 0.7(Load Ratio=0.33) is recomended in order to replace R12 without reduction in volumetric capacity when keeping the compressor as the same one. COP has the highest value with X(R22)=0.7 and 0.8, respectively. For the case of R143a/R123, in the similar manner, mass fraction of R143a is more than 0.5 or 0.6 while best performance occurs at X(R143a)=0.8. Higher temperature intercooler is more important for the performance of the system than lower temperature intercooler. The area ratio of evaporators is roughly proportional to load ratio of the evaporators.

  • PDF

Frosting Heat Transfer Characteristics of Evaporators Used for Household Refrigerators According to Fin Configuration (냉장고용 증발기의 핀 형상 변화에 따른 착상 열전달 성능특성)

  • Lee, Moo-Yeon;Lee, Sang-Heon;Jung, Hae-Won;Kim, Yong-Chan;Park, Jae-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1071-1078
    • /
    • 2010
  • The objective of this study is to investigate the heat transfer characteristics of evaporators that have various fin configurations and are used in household refrigerators. The frosting and defrosting characteristics of a spirally coiled circular fin-tube evaporator, a discrete-plate fin-tube evaporator, and a continuous-plate fin-tube evaporator were measured and compared. Under non-frosting conditions, the heat transfer coefficient of the spirally coiled circular fin-tube evaporator was 22.3% and 40.2% higher than the coefficients of the discrete- and continuous-plate fin-tube evaporators, respectively. Under frosting conditions, the heat transfer coefficient of the spirally coiled circular fin-tube evaporator was 27.0% and 46.3% higher than the coefficients of the discrete- and continuous-plate fin-tube evaporators, respectively. In addition, the defrosting water amount of the spirally coiled circular fin-tube evaporator was 3.2% and 9.4% lower than the amounts in the case of the discrete- and continuous-plate fin-tube evaporators, respectively.

Performance of Refrigerator Using R134a, R152a and R22/142b (R134a, R152a, R22/142b를 이용한 냉동기의 성능실험)

  • Chang, Y.S.;Shin, J.Y.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.1
    • /
    • pp.39-46
    • /
    • 1994
  • Experiments on the performance of refrigeration system using alternatives to R12 are carried out. The condenser and the evaporator are concentric-tube heat exchangers of counter-flow type and the compressor is driven by a variable speed motor. In this study, R134a, R152a, R22/142b(50 : 50 by mass) are adopted as alternatives to R12. Tests are performed by varying the inlet and outlet temperatures of secondary fluids of evaporator and condenser under the condition of constant compressor speed, degree of superheating and degree of subcooling. Results show that R134a has refrigeration capacity close to that of R12 and requires the greatest compressor power compared with that of others. And the system using R152a shows the best performance from the viewpoint of refrigeration capacity, compressor power and coefficient of performance. R22/142b is superior to R12 in the above points.

  • PDF

Noise-source Identification of Evaporator Using Partial Coherence Function (부분기여도함수를 이용한 증발기의 소음원 분석)

  • Choi, Ki-Soo;Jeong, Wei-Bong;Han, Hyung-Suk;Kim, Min-Seong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.347-354
    • /
    • 2009
  • Frequency analysis is one of the most useful way to analyze response signal for the purpose of grasping the dynamic characteristics of system through Fourier transformation. Although it is very effective way for frequency analysis, it is hard to analyze out a specific sound or vibration component which is correlated with others. In this thesis, source contribution analysis tool for NI-PXI equipment is developed with LabVIEW using coherences of MISO(multiple-input single-output) model. For the purpose of examining propriety of developed tool, simulation is performed with several correlated signals that have different frequency range. After checking the OCF(ordinary coherence function) and PCF(partial coherence function) of the each signal for concerned frequency domain, an experiment is conducted on an evaporator that cause the principal noise of a refrigerator. This developed tool will be expected to build up more convenient and serviceable measurement system.

Performance Comparison of Hot-gas Bypass Types with the Variation of Refrigeration Load (부하변화에 따른 hot-gas 바이패스 방식별 성능 비교)

  • Baek, Seung-Moon;Yoon, Jung-In;Son, Chang-Hyo;Heo, Jung-Ho
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.48-54
    • /
    • 2014
  • In this paper, three refrigeration systems bypassing hot-gas to compressor outlet, compressor and condenser outlet and evaporator inlet are theoretically compared to offer basic design data for performance depending on cooling load using a HYSYS program. The main results are summarized as follows : First, the COP of third system is the highest. Next, the COP of second system is higher than first one. And, the temperature of compressor inlet of third system is constant for all cooling load. Compared to first and second system, the compressor inlet temperature of the first system is higher than second one for all cooling loads. From the above results, third system, which is bypassing hot-gas to evaporator inlet, is more advantageous when considering the precise temperature control and excellent performance of oil and water cooler of industrial machine.

Pool boiling performance of an enhanced tube used in flooded refrigerant evaporator for turbo-refrigerator (터보냉동기용 만액식 증발기에 사용되는 성형가공관의 풀비등 성능)

  • 김태형;김내현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.808-814
    • /
    • 1999
  • Pool boiling performance of a metal-formed enhanced tube for a flooded refrigerant evaporator was experimentally investigated. Tests were performed for three different refrigerants(R-11, R-123, R-l34a), at two different saturation temperatures $4.4^{\circ}C \;and \;26.7^{\circ}C$ .Heat flux was varied from 10㎾/$m^2\;to\ 50㎾/$m^2$. Compared with the heat transfer coefficients of the smooth tube, the heat transfer coefficients of the enhanced tube were 6.6 times higher for R-11, 6.0 tines higher for R-123 and 3.5 times higher for R-l34a. The enhancements are comparable with those of foreign products. The heat transfer coefficients of R-l34a were higher than those of R-11 and R-123, either for the enhanced tube or for the smooth tube. At $4.4^{\circ}Csaturation temperature, however, the heat transfer coefficients of R-l34a were approximately the same as those of R-11, The effect of the saturation pressure on the boiling performance was similar to that of the smooth tube - the heat transfer coefficient increases as the saturation pressure increases.

  • PDF

Performance Evaluation of the Hybrid Defrost Process in the Fin-Tube Evaporators of Refrigerators (하이브리드 제상 방식을 적용한 냉장고용 핀-관 열교환기의 제상 성능 평가)

  • Lee, Su-Won;Park, Yong-Joo;Kweon, Lae-Un;Jeong, Young-Man;Lee, Jae-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.38-46
    • /
    • 2011
  • The hybrid defrost process combined with hot-gas bypass defrost and electric heater defrost was experimentally evaluated about its defrost performance in the fin-tube evaporators of household refrigerators. Also the hybrid defrost process was compared with only electric heater defrost process. The defrost efficiency of the hybrid defrost process was shown two times higher than electric heater defrost process. The defrost time of the hybrid defrost process was shorten about 10%~50% than electric heater defrost process. Thermal shock after defrost process was decreased about 50% for the case of the hybrid defrost. It was found that energy consumption ratio of defrost process was reduced up to 7.4% compared with 22.4% of electric heater defrost at the condition of $25^{\circ}C$ ambient temperature.

Performance Evaluation of a Defrosting System Using the Condensation Heat of a Refrigerator in Cold Storage (저온창고에서 냉동기 응축폐열을 이용한 제상시스템 성능평가)

  • Park, Chunwan;Lee, Donggyu;Im, Kwanbin;Kang, Chaedong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.2
    • /
    • pp.72-78
    • /
    • 2014
  • In a cold chain, the refrigerator is also employed for defrosting, by using an electric heater, which consumes 15% of the power for the system operation. In this study, the condensation heat of the refrigerant was suggested as the heat source of defrosting heat, instead of that from an electric defrost heater. The heat for defrosting was stored to a phase change material (PCM, NMP : $52^{\circ}C$) in thermal storage, and was periodically supplied to the evaporator by a circulation loop of brine. As a result, a defrost time by the PCM was obtained that was less than or equal to that by the electric heater. Moreover, power consumption during defrosting was saved by up to 99% of that of the electric heater.