• Title/Summary/Keyword: Refrigerator Noise

Search Result 98, Processing Time 0.023 seconds

Study on Noise Reduction of An Axial Flow Fan According to the System Characteristics (시스템 특성을 고려한 축류팬 저소음화에 대한 연구)

  • Yoon, Hong-Yeol;Kim, Chang-Jun;Song, Sung-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1381-1385
    • /
    • 2000
  • In this paper, a guideline of axial flow fan design for noise reduction of refrigerators is p resented. Refrigerators have components which have a role to screen particular frequency air borne-noise which is generated by an axial flow fan set in them. Effective ways to use the particular characteristic of refrigerators are shown in this study. As a result of application of the methods, we reduced the noise of the target systems by more than 3 dB(A) from the viewpoint of air-borne noise produced by the axial flow fan set.

  • PDF

Prediction of Two-phase Flow Patterns and Noise Evaluation for Evaporator Pipe in a Refrigerator (냉장고 증발기 배관의 2상유동양식 예측 및 소음 평가)

  • Heo, So-Jung;Kim, Min-Seong;Han, Hyung-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.916-923
    • /
    • 2011
  • The refrigerant after the expansion valve interchanges the heat at the evaporator. At this moment, the state of gas and liquid becomes two-phase flow and causes irregular noise. In order to avoid the noise, the two-phase flow pattern should be predicted. In this paper, the procedure to predict the two-phase flow patterns such as churn flow and annular flow was suggested using the CFD software. The experiments using refrigerant-supplying equipment was carried out and the noise levels according to the flow pattern were measured. The flow patterns predicted by this procedure showed good agreement with those by experiments. The churn flow is noisier than annular flow pattern.

Effective Analysis on the Mechanical Behavior of a Refrigerator using Equivalent Material Properties of Multi-layers (다중재질 접합구조의 등가물성을 이용한 효과적 냉장고 구조 변형 분석에 관한 연구)

  • Park, Jeong-Hyun;Lee, Dong-Kyu;Park, Sang-Hu;Park, Ki-Hong;Ha, Byeong-Kuk;Kim, Hyeong-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1228-1235
    • /
    • 2012
  • A refrigerator has many components which are made from diverse materials such as metal, polymer, plastic, and rubber. So, it generally requires much time and efforts to build up an analysis model in finite element analysis. In this work, to reduce the computational time and efforts a simplified modeling method was proposed for the analysis of a refrigerator. Occasionally, a stick-slip noise occurs in a refrigerator due to relative slip between shelf and inner-case. When we solve the problem by a FE analysis, we should model the structures with detail for considering the contact conditions; by this reason, too many efforts are consumed in the conventional analysis method. Through this work, we shows the concept of simplifying approach and a good agreement with the results of a real model analysis. And also, the evaluation of the proposed method and the application of contact analysis using the simplified model are discussed.

Force Identification and Sound Prediction of a Reciprocating Compressor for a Refrigerator (냉장고용 왕복동식 압축기의 가진력 규명 및 방사소음 예측)

  • Kim, Sang-Tae;Jeon, Gyeoung-Jin;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.437-443
    • /
    • 2012
  • In this paper, the hybrid method to identify the exciting forces and radiated noise generated from the reciprocating compressor was presented. In order to identify the exciting force, both the acceleration data measured at the compressor shell and numerical finite element model for the full set of compressor were used simultaneously. Applying the identified exciting forces to the numerical model, the velocity responses of all nodes at the shell were predicted. Finally the radiated noises from the vibrating shell were predicted by using the direct boundary element acoustic analysis. For precise numerical modeling, the stiffness of rubber mounts and body springs were identified experimentally from the natural frequencies measured by impact testing. The error of over-all sound pressure level between predicted noise and measured noise was about 2.9 dB.

Optimal Design for Cushioning Package of a Heavy Electronic Product using Mechanical Drop Analysis (낙하충격해석을 통한 대형 전자제품의 완충포장재 최적설계)

  • 금대현;김원진;김성대;박상후
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.677-683
    • /
    • 2003
  • Generally, heavy electronic products undergo many different types of shocks in transporting from a manufacturer to customers. Cushioning package materials are used to protect electronic products from severe shock environments. Since the mass distributions of heavy electronic products are usually unbalanced and complex, it is very difficult to design a cushioning package with haying high performance by considering only the equivalent stiffness of that. Therefore, when designing the cushioning material for a heavy electronic product, it is necessary to optimize its shape in order to maximize the cushioning performance. In this study, it is focused on designing an optimal shape of cushioning material for a large-sized refrigerator and an efficient design method is suggested by using a dynamic finite element analysis. As the results of this study, the optimal shape of cushioning material, which has high cushioning performance and minimized volume, was obtained from the drop analysis and a optimization process. From free drop tests of a refrigerator, it was identified that the cushioning performance of the optimal package were improved up to 16 % and the volume of it was reduced in a range of 22 %.

  • PDF

Objective Assessment Model for Refrigerator Noises (냉장고 소음의 객관적 평가 모델)

  • Park, Jong-Geun;Cho, Youn;Lee, Sang-Wook;Hwang, Dae-Sun;Lee, Chul-Hee
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.5
    • /
    • pp.80-90
    • /
    • 2009
  • This paper presents objective methods which predict perceptual noise levels caused by refrigerators. Eight home refrigerators are chosen and their noises are recorded in an anechoic-chamber and a real-life apartment. In order to obtain perceptual noise levels of the refrigerators, subjective quality assessment tests were performed by 100 evaluators Then, we compute 5 sound quality metrics (SQM) which reflect psychoacoustics characteristics. Finally, objective assessment model for refrigerator noises is developed by linear combination of SQMs.

Study on the Noise Reduction of BLDC Fan Motor by the Diminution of the Electro-Magnetic Exciting Source (전자기 가진 원 저감에 의한 BLDC Fan Motor의 공진 소음 저감에 관한 연구)

  • Shin, Hyun-Jung;Lee, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.857-860
    • /
    • 2006
  • It is important to diminish noise source of an electric motor used in appliances. We studied on the noise reduction of BLDC motor to drive a fan. Especially, this study was focused on detent torque caused by interaction between a permanent magnet of rotor and groove in stator. This source and rotating system brought about a resonance. This paper showed that the higher harmonic component of this torque had a main factor to lessen noise. So, we had designed new magnets with shape like a peanut and pseudo-sinusoidal flux density for low-noise BLDC motor in refrigerator.

  • PDF

A Characteristics and Analysis of Aeroacoustic Noise for Appliance Fans (가전제품 홴 공력소음 특성 및 해석)

  • 전완호;김창준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1140-1145
    • /
    • 2003
  • In this paper, some dominant aeroacoustic characteristics of fans used in appliances are reviewed. The numerical attempts to analyze tile aeroacoustic noise of fans are briefly reviewed for various fans. Axial fans for refrigerator, cross flow fans fer air-conditioner, sirocco fans and turbo fans are anal: zed. The unsteady flow field, which is essential data for aeroacoustic analysis, is calculated by commercial CFD code. Acoustic pressure is calculated by Ffowcs Williams and Hawkings equation and Lowson's equation. During the analysis, dominant noise sources are identified.

  • PDF

THE DEVELOPMENT OF A LOW NOISE 230 GHZ SIS RECEIVER IN NAGOYA UNIVERSITY

  • XIAO K. C.;OGAWA H.;FUKUI Y.;SUZUKI H.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.413-414
    • /
    • 1996
  • A 230 GHz SIS tunnel junction receiver has been being developed for radio astronomy in Nagoya University. In this heterodyne receiver, we use a $\~$1/3 reduced hight rectangular waveguide SIS mixer with two tuning elements as front end. The mixer block with SIS junction was cooled to 4K with a closed cycle He-gas refrigerator. So far, a double sideband receiver noise temperature lower than l00K in 222-237 GHz is obtained. The receiver exhibits a best DSB noise temperature of 69K at 236 GHz as well as 228 GHz.

  • PDF