• 제목/요약/키워드: Refrigeration vehicle

검색결과 45건 처리시간 0.024초

HFC152a 대체냉매를 이용한 자동차 냉방장치의 성능 최적화에 관한 연구 (Study of Performance Optimization as an Alternative Refrigerant HFC152a in a Mobile Air Conditioning System)

  • 이대웅
    • 설비공학논문집
    • /
    • 제27권6호
    • /
    • pp.321-327
    • /
    • 2015
  • This study presents an HFC152a refrigerant air conditioner as an alternative to HFC134a, which is currently used in mobile air conditioning systems. Cool-down performance tests of an HFC152a air conditioning system were conducted and compared to a baseline HFC134a air conditioner. The experimental set-up consisted of a belt-driven compressor, a sub-cooled type condenser, an evaporator, and a block-type thermal expansion valve (TXV). A drop-in test was carried out on the mobile air conditioning system under various vehicle running speeds in a climate-controlled wind tunnel (CWT). Additionally, to optimize the HFC152a air conditioning system, the effects of the TXVs on the performance were studied. The results show that compared to the HFC134a air conditioning system, the refrigerant charge quantity was reduced by approximately 20%, the discharge pressure was reduced by about 350~430 kPa, and the air discharge temperature at vehicle running conditions was $0.5{\sim}1.5^{\circ}C$ lower. In addition, good compressor durability was expected due to the lower compression ratio.

가스 인젝션을 적용한 전기자동차용 히트펌프의 난방성능 특성에 대한 실험적 연구 (An Experimental Study on the Heating Performance Characteristics of a Vapor Injection Heat Pump for Electric Vehicles)

  • 김동우;정종호;김용찬
    • 설비공학논문집
    • /
    • 제26권7호
    • /
    • pp.308-314
    • /
    • 2014
  • A heat pump has been considered as a thermal management unit for electric vehicles, including the heating and cooling of the cabin. However, the heat pump shows performance degradation at low outdoor temperatures or high compressor speeds. In this study, a R-134a heat pump for an electric vehicle was designed to improve system efficiency, by applying vapor injection with an internal heat exchanger. The heating performance characteristics of the vapor injection heat pump were analyzed at various compressor speeds and outdoor temperatures. The vapor injection heat pump showed 13.3% COP improvement over the non-injection heat pump, when the heating capacity was fixed at 5.2 kW. In addition, the heating capacity of the vapor injection system increased by 9.6%, as compared to the non-injection system.

저온 출구의 배압조건에 따른 볼텍스 튜브의 온도분리 특성 연구 (Temperature Separation Characteristics of a Vortex Tube Based on the Back Pressure of the Cold Air Exit)

  • 임석연
    • Tribology and Lubricants
    • /
    • 제32권5호
    • /
    • pp.166-171
    • /
    • 2016
  • Electric vehicle ownership is expanding for two reasons: its technology features have enhanced fuel economy, and the number of vehicle emissions regulations is increasing. Battery performance has a large influence on the capability of electric vehicles, and even though battery thermal management has been actively researched, specific technological improvements to battery performance are not being presented. For instance, many industrial applications utilize vortex tubes as components for refrigeration machines because of their numerous intrinsic benefits. If electric vehicles incorporate vortex tubes for battery cooling, performance and efficiency advancements are possible. This study uses a counter-flow vortex tube to investigate its temperature separation characteristics, based on the back pressure of the cold air exit and the difference between the inlet and back pressures. The experiment uses a vortex tube with the following parameters: six nozzle holes, a 20 mm inner vortex diameter (D), a 14D tube length, a 0.7D cold exit orifice diameter, and a nozzle area ratio of 0.142. The measurements prove that the temperature difference between the hot air and cold air decreased because of the flow resistance of the hot air and the backflow phenomenon at the cold air exit. The flow resistance causes the temperature difference to decrease, and the back pressure of the cold air exit influences the flow resistance. The results show that the back pressure significantly influences the efficiency of temperature separation.

수치해석을 통한 자동차 전면유리 제상성능 제어인자 연구 (Numerical Study on Control Factors of Defrosting Performance for Automobile Windshield Glass in Winter)

  • 윤영묵;;이금배;전용두
    • 설비공학논문집
    • /
    • 제20권12호
    • /
    • pp.789-794
    • /
    • 2008
  • Recently, much attention has been paid in the field of defrosting because clear windshield in vehicle without effecting the thermal comfort is realized essentially. Then in winter, defrosting performance is one of the important factors in vehicle design to make certain driver's view. In this study, the velocity profile, temperature distribution and frost melting pattern on the windshield screen have been predicted in three dimensional geometry of an automobile interior. Numerical analyses predict a detailed description of fluid flow and temperature patterns on the inside windshield screen, utilizing the flow through defroster nozzle. Numerical prediction established a good defrosting performance with the standard distance ratio and the defroster nozzle angle ranging from $30^{\circ}$ to $40^{\circ}$, which satisfy the condition of National Highway Traffic Safety Administration (NHTSA) completely.

자동차 배기폐열 회수용 열전발전 시스템의 성능에 관한 연구 (Experimental Study on Thermoelectric Generator Performance for Waste Heat Recovery in Vehicles)

  • 이대웅
    • 설비공학논문집
    • /
    • 제26권6호
    • /
    • pp.287-293
    • /
    • 2014
  • Internal combustion engines release 30~40% of the energy from fossil fuels into the atmosphere in the form of exhaust gases. By utilizing this waste heat, plenty of energy can be conserved in the auto industry. Thermoelectric generation is one way of transforming the energy from engine's exhaust gases into electricity in a vehicle. The thermoelectric generators located on the exhaust pipe have been developed for vehicle applications. Different experiments with thermoelectric generators have been conducted under various test conditions as following examples: hot gas temperature, hot gas mass flow rate, coolant temperature, and coolant mass flow rate. The experimental results have shown that the generated electrical power increases significantly with the temperature difference between the hot and the cold side of the thermoelectric generator and the gas flow rate of the hot-side heat exchanger. In addition, the gas temperature of the hot-side heat exchanger decreases with the length of the thermoelectric generator, especially at a low gas flow rate.

자동차 엔진냉각계의 해석 프로그램의 개발 (Development of Simulation Program of Automotive Engine Cooling System)

  • 배석정;이정희;최영기
    • 설비공학논문집
    • /
    • 제15권11호
    • /
    • pp.943-956
    • /
    • 2003
  • A numerical program has been developed for the simulation of automotive engine cooling system. The program determines the mass flow rate of engine coolant circulating the engine cooling system and radiator cooling air when the engine speed is adopted by appropriate empirical correlation. The program used the method of thermal balance at individual element through the model for radiator component in radiator analysis. This study has developed the program that predicts the coolant mass flow rate, inlet and outlet temperatures of each component in the engine cooling system (engine, transmission, radiator and oil cooler) in its state of thermal equilibrium. This study also combined the individual programs and united into the total performance analysis program of the engine cooling system operating at a constant vehicle speed. An air conditioner system is also included in this engine cooling system so that the condenser of the air conditioner faces the radiator. The effect of air conditioner to the cooling performance, e.g., radiator inlet temperature, of the radiator and engine system was examined. This study could make standards of design of radiator capacity using heat rejection with respect to the mass flow rate of cooling air. This study is intended to predict the performance of each component at design step or to simulate the system when specification of the component is modified, and to analyze the performance of the total vehicle engine cooling system.

철도차량용 공기압축기의 열교환기 최적 설계를 위한 해석 연구 (Numerical Analysis for Optimal Design of Heat Exchanger in Air Compressor for Railroad Vehicle)

  • 김무선;정종덕;장성일;안준
    • 설비공학논문집
    • /
    • 제29권11호
    • /
    • pp.570-579
    • /
    • 2017
  • In this study, we examined the multi-stage piston-type air compressors typically used in a railroad vehicle, and the heat transfer efficiency was analyzed according to the design conditions of the heat exchanger (a compressor component module for cooling the compressed high temperature air). For the fin-tube heat exchanger used in the most air compressors, numerical analysis was performed to analyze heat transfer by defining the various rectangle tube sizes and the number of fin-per-unit area as design variables under the same flow rate of compressed air. Also, this analysis compared the temperature of the compressed air. Regarding environmental conditions for analysis, the flow rate of the external cooling air was measured and the mean value of the values was applied. And a "turbulence model" was considered in both the external flow of the cooling air and the internal flow inside the tube. From the results of analysis, it was found that the change of the aspect ratio value of the tube greatly influences the heat transfer efficiency of the compressed air, and influences if the fin density is relatively small. As a result, the optimum design specifications of the heat exchanger for air compressors were confirmed based on the analysis of the heat transfer efficiency, according to the design conditions of fin and tube by the operating temperature range of the compressed air.

자동차 에어컨 시스템 해석 프로그램의 개발 (Development of program for the automotive air conditioning system analysis)

  • 홍진원;최영기;이정희
    • 설비공학논문집
    • /
    • 제10권2호
    • /
    • pp.227-237
    • /
    • 1998
  • A numerical simulation has been carried out for the automotive air conditioning system. The purpose of this simulation is to present the methods for simulating car air conditioning components, systems and cool-down performance by computerized mathematical model and to analyze the performance of A/C system. In analyzing the heat exchanger(evaporator and condenser), the finite volume model which has a merit in predicting the temperature field in detail because it can consider partial variation of thermal property and heat transfer coefficient is used. In analyzing the compressor, the polytropic approach which regards the actual compression process as a reversible polytropic process is employed. In analyzing vehicle passenger compartment, the thermal network is employed to simulate the car cool down process. This A/C system program can be used for analyzing a component performance when a component is alternated or designed and for analyzing the engine cooling system when A/C system is operated.

  • PDF

네트워크형 지하도로 입체교차로 내의 교통환기력에 의한 환기 특성 (Ventilation Characteristics by Traffic Piston Effect in Underground Network-type Road Junction)

  • 김남영;조종복;한화택
    • 설비공학논문집
    • /
    • 제27권7호
    • /
    • pp.337-343
    • /
    • 2015
  • This paper investigates the ventilation characteristics in a two-dimensional underground network junction composed of four main lines interconnected by eight ramps. Simple one-dimensional models cannot be applied to network junctions since there are interferences of traffic piston effects in the main lines and at the ramps. A numerical algorithm was developed to analyze the pressure and airflow distributions iteratively. The Darcy-Weisbach equation was used to calculate the piston effects by traffic flows, and a Hardy Cross iteration was conducted for network analysis at the interconnected junction. The results show interesting ventilation characteristics and CO concentration distributions depending on system parameters such as vehicle speed, tunnel diameter, and other junction configurations.

듀얼 냉동사이클을 이용하는 특수목적 자동차용 에어컨 시스템의 냉방성능에 관한 연구 (Investigation on the Performance of Special Purpose Automotive Air-Conditioning System Using Dual Refrigeration Cycle)

  • 서재형;방유마;이무연
    • 대한기계학회논문집B
    • /
    • 제40권4호
    • /
    • pp.213-220
    • /
    • 2016
  • 본 연구의 목적은 열대 지방에서 사용되는 특수목적 자동차용 에어컨 시스템의 냉방성능 특성을 고찰하는 것이다. 이를 위하여 R-134a를 사용하는 듀얼 냉동사이클을 구성하였고 냉매량 및 실내온도를 변화시켜가면서 냉방성능을 비교하였다. 외기온도 $40.0^{\circ}C$에서 듀얼 냉동사이클의 실내 냉각속도 및 압축비(토출압력) 등을 고려하여 최적 냉매량을 1.5kg으로 선정하였다. 실내온도가 증가할수록 냉방부하가 증가하여 $25.0^{\circ}C$에서 $32.5^{\circ}C$로 실내온도를 높일 경우 $15.0^{\circ}C$에 도달하는데 걸리는 시간은 86.5% 증가하였고, $32.5^{\circ}C$에서 $40.0^{\circ}C$로 증가할 경우 38.1% 증가하였다. 또한, 실내온도가 $25.0^{\circ}C$에서 $40.0^{\circ}C$로 증가할수록 냉방용량은 19.1 kW에서 20.5 kW로 7.3% 증가했으나 냉방성능(COP)는 4.67에서 5.1로 7.0%감소하였다.