• Title/Summary/Keyword: Refrigeration Cycle

Search Result 445, Processing Time 0.021 seconds

An investigation on the system characteristics of a refrigerator with alternative refrigerants (대체냉매를 이용한 가정용 냉장고의 시스템 특성에 관한 연구)

  • 신진규;문춘근;윤정인
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.753-762
    • /
    • 1998
  • A domestic refrigerator is composed of many components such as a compressor, evaporator, capillary tube, and the cabinet which plays a great role on the cycle performance, even if it is not the basic component part in the cycle. Recently, the restriction policy on the energy-saving and environmentally friendly refrigerator is reinforced in our nation as well as developed countries. Therefore, in this paper, cycle simulations and experiments were carried out ito understand the characteristics of the cycle performance using CFC 12, HFC 134a, and HC 600a and to know how changes in UA(overall heat transfer coefficients$\times$ heat transfer area) of evaporator, the position displacement of compressor, and the rpm of fan in the freezing room which has influence on the cycle performance. The result shows that the quantitative values of simulation and experiment are not coincident, but their trend is similar. When HFC 134a and HC 600a were used without the change of design in refrigerator used CFC 12, the performance of system in HC 600a is 30% lower, and the case of HFC 134a is 10% lower than that of CFC 12 on freezing temperature.

  • PDF

Simulation Study on the Performance Characteristics of a $CO_2$ Cooling System with an Expander (팽창기를 적용한 이산화탄소 냉방시스템의 성능특성에 관한 해석적 연구)

  • Cho, Hong-Hyun;Baek, Chang-Hyun;Ryu, Chang-Gi;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.9
    • /
    • pp.630-639
    • /
    • 2007
  • A $CO_2$ cycle shows large throttling loss during the expansion process. The application of an expander into the $CO_2$ cycle can reduce the throttling loss and then improve system performance. In this study, the performance of a transcritical $CO_2$ cycle with an expander was analytically investigated in order to improve the cooling performance of the system. The expander was applied to the single-stage and two-stage compression cycles. The performance was analyzed with the variations of compressor frequency, outdoor temperature, and expander efficiency. The single-stage and two-stage compression cycles with the expander showed COP improvement of 25% and 32%, respectively, over the single-stage cycle with an EEV.

Design Performance Analysis of Micro Gas Turbine-Organic Rankine Cycle Combined System (마이크로 가스터빈과 유기매체 랜킨사이클을 결합한 복합시스템의 설계 성능해석)

  • Lee Joon Hee;Kim Tong Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.536-543
    • /
    • 2005
  • This study analyzes the design performance of a combined system of a recuperated cycle micro gas turbine (MGT) and a bottoming organic Rankine cycle (ORC) adopting refrigerant (R123) as a working fluid. In contrast to the steam bottoming Rankine cycle, the ORC optimizes the combined system efficiency at a higher evaporating pressure. The ORC recovers much greater MGT exhaust heat than the steam Rankine cycle (much lower stack temperature), resulting in a greater bottoming cycle power and thus a higher combined system efficiency. The optimum MGT pressure ratio of the combined system is very close to the optimum pressure ratio of the MGT itself. The ORC's power amounts to about $25\%$ of MGT power. For the MGT turbine inlet temperature of $950^{\circ}C$ or higher, the combined system efficiency, based on shaft power, can be higher than $45\%$.

Comparison Between Two Solar Absorption Cooling System Using Single Effect and Single Effect/Double Lift Cycle (일중효용 사이클과 일중효용/2단승온 사이클을 이용한 태양열 흡수식 냉방시스템의 비교)

  • 정시영;이상수;조광운;백남춘
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.267-276
    • /
    • 2000
  • A numerical study has been carried out to find out the optimal design condition of a solar absorption cooling system. The system was composed of solar collectors and an absorption chiller with LiBr/water The System performance with commercial single effect(SE) cycle and a new single effect/double lift(SE/DL) cycle utilizing low temperature hot water was calculated and compared. It was found that the required solar collector area grew exponentially as the overall heat loss coefficient of solar collectors increased. For instance, the required area for cooling capacity of 1 USRT was $17m^2$ if heat loss coefficient was 4 W/$m^2\;cdot\;K$. If heat loss coefficient was doubled($8\;W/m^2\;cdot\;$K), the required collector area was increased by 6 times($100m^2$) .It was also found that the SE-cycle as the heat loss coefficient of solar collectors increased. Generally, a SE/DL-cycle seems to be more advantageous than a SE-cycle if loss coefficient of solar collector is greater than 4 W/$m^2\;cdot\;K$.

  • PDF

Performance Analysis of New Working Solution for Absorption Refrigeration Machine using Treated Sewage (하수처리수이용 신용액 흡수식 냉동기의 성능해석)

  • 권오경;유선일;윤정인
    • Journal of Energy Engineering
    • /
    • v.7 no.2
    • /
    • pp.231-240
    • /
    • 1998
  • The global environmental problems such as CFC, energy losses in heat recovery system as well as summer peak time power demands, the development of high efficiency absorption refrigeration systems is one of the most promising method in this problems. The absorption refrigeration system to utilize treated sewage is available for environmental protection and energy conservation. Simulation analysis on the double-effect absorption refrigeration cucles with parallel or series flow type has been performed. LiBr+LiI+LiCl+LiNO$_3$ solution was selected as the new working fluid. The main purpose of this study is evaluating the possibilities of effective utilization of treated sewage as a cooling water for the absorber and condenser. The other purpose of the present study is to determine the optimum designs and operating conditions based on the operating constraints and the coefficient of performance in the parallel or series flow type. In this study, we found out the characteristic of new working solution through the cycle simulation and compared LiBr solution to evaluate. The absorption refrigeration machine using the new working fluid was obtained better results COP rise and compactness of system by comparison with LiBr solution.

  • PDF

An Experimental Study on the Optimization of the Performance Characteristics of a Refrigeration System Using R-600a and R-134a (R-600a 및 R-134a를 공용으로 사용한 소형 냉동사이클의 성능 특성 최적화에 대한 실험적 연구)

  • Jang, Eui-Sung;Yoon, Won-Jae;Chung, Hyun-Joon;Jung, Hae-Won;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.5
    • /
    • pp.268-274
    • /
    • 2010
  • Because both R-134a and R-600a are used as a refrigerant of a household refrigerator in the global market, the home-appliance industry needs an optimized cycle for both refrigerants. The objective of this study is to provide the design guideline on the optimization of a refrigeration system using both refrigerants. For both refrigerants, the performance characteristics of the refrigeration system were tested by varying refrigerant charge amount, capillary tube length, suction diameter and SLHX length. The tested refrigeration system was optimized at the refrigerant charge of 60 g and the capillary tube length of 3600 mm with R-134a, and the refrigerant charge of 34 g and the capillary tube length of 3900 mm with R-600a. The COP increased from 1.63 to 1.68 for R-134a and increased from 1.37 to 1.48 for R-600a, respectively, by applying the suction diameter expansion. In addition, the COP of the R-134a and R-600a system decreased by 2.3~2.4% as the SLHX length decreased by 300 mm.

Performance of R430A on Refrigeration System of Domestic Water Purifiers (대체냉매 R430A를 적용한 정수기 냉동시스템의 성능 평가)

  • Park, Ki-Jung;Lee, Yo-Han;Jung, Dong-Soo;Kim, Kyoung-Kee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.109-117
    • /
    • 2009
  • In this study, thermodynamic performance of R430A is examined both numerically and experimentally in an effort to replace HFC134a used in the refrigeration system of domestic water purifiers. Even though HFC134a is used predominantly in such a system these days, it needs to be phased out in the near future in Europe and most of the developed countries due to its high global warming potential. To solve this problem, cycle simulation and experimental measurements are carried out with a new refrigerant mixture of 76%R152a124% R600a using actual domestic water purifiers. This mixture is numbered and listed as R430A by ASHRAE recently. Test results show that the system performance with R430A is greatly influenced by the amount of charge due to the small internal volume of the refrigeration system of the domestic water purifiers. With the optimum amount of charge of 21 to 22 grams, about 50% of HFC134a, the energy consumption of R430A is 13.4% lower than that of HFC 134a. The compressor dome and discharge temperatures and condenser center temperature of R430A are very similar to those of HFC134a at the optimum charge. Overall, R430A, a new long term environmentally safe refrigerant, is a good alternative for HFC134a requiring little change in the refrigeration system of the domestic water purifiers.

Design and Exergy Analysis for a Combined Cycle using LNG Cold/Hot Energy (액화천연가스 냉온열을 이용한 복합사이클의 설계 및 엑서지 해석)

  • Lee Geun Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.285-296
    • /
    • 2005
  • In order to reduce the compression power and to use the overall energy contained in LNG effectively, a combined cycle is devised and simulated. The combined cycle is composed of two cycles; one is an open cycle of liquid/solid carbon dioxide production cycle utilizing LNG cold energy in $CO_2$ condenser and the other is a closed cycle gas turbine which supplies power to the $CO_2$ cycle, utilizes LNG cold energy for lowering the compressor inlet temperature, and uses the heating value of LNG at the burner. The power consumed for the $CO_2$ cycle is investigated in terms of a production ratio of solid $CO_2$. The present study shows that much reduction in both $CO_2$ compression power (only $35\%$ of power used in conventional dry ice production cycle) and $CO_2$ condenser pressure could be achieved by utilizing LNG cold energy and that high cycle efficiency ($55.3\%$ at maximum power condition) in the gas turbine could be accomplished with the adoption of compressor inlet cooling and regenerator. Exergy analysis shows that irreversibility in the combined cycle increases linearly as a production ratio of solid $CO_2$ increases and most of the irreversibility occurs in the condenser and the heat exchanger for compressor inlet cooling. Hence, incoming LNG cold energy to the above components should be used more effectively.

Simulation on a Residential Heat Pump System Using $CO_2$ (이산화탄소를 적용한 주거용 냉난방 겸용 열펌프 시스템의 시뮬레이션)

  • 조홍현;이무연;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.12
    • /
    • pp.987-995
    • /
    • 2003
  • The performance of a residential heating and cooling system with $CO_2$ is predicted by using a cycle simulation model. The simulations are conducted by varying design parameters and operating conditions. The efficiency of the transcritical cycle can be improved by utilizing the advantages in heat transfer characteristics of $CO_2$ and developing microchannel indoor and outdoor heat exchangers. For the designed system of this study, the predicted COP of the heat pump system is approximately 3.5 in the heating mode and 3.0 in the cooling mode. The predicted optimal discharge pressure for the heat pump system is approximately 11 MPa in the heating mode and 9 MPa in the cooling mode.

Cycle Simulation of a Desiccant Cooling System with a Regenerative Evaporative Cooler (재생형 증발식 냉각기를 이용한 제습 냉방시스템의 성능해석)

  • 이재완;이대영;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.566-573
    • /
    • 2004
  • Comparison of the cooling performance is provided between the desiccant cool-ing systems incorporating a direct evaporative cooler and a regenerative evaporative cooler, respectively. Cycle simulation is conducted, and the cooling capacity and COP are evaluated at various temperature and humidity conditions. The COP of the system with a regenerative evaporative cooler and the regeneration temperature of 6$0^{\circ}C$ is evaluated 0.65 at the outdoor air condition of 35$^{\circ}C$ and 40% RH. This value is found about 3.4 times larger than that of the system with a direct evaporative cooler. Furthermore, incorporating a regenerative evaporative cooler eliminates the need for deep dehumidification in a desiccant dehumidifier that is necessary to achieve low air temperature in the system with a direct evaporative cooler. Subsequently, the regenerative evaporative cooler enables the use of low temperature heat source to regenerate the dehumidifier permitting the desiccant cooling system more beneficial compared with other thermal driven air conditioners.