This paper presents the friction and anti-wear characteristics of nano-oil with a mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear using nano-oil is evaluated using the thrust bearing experimental apparatus for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and rotating speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing rotating speed and normal force. The friction coefficient of carbon nano-oil is 0.023, while that of pure oil is 0.03 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oil enhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.
An experimental study was conducted to analyze performance of a heating system with variation of control logic of the system. The system uses a solar as heat source and composed with heat pump that uses R-22 as working fluid. The difference between the developed system and the commercially available heating system is working fluid. The solar assisted heating system which was widely distributed in the market uses water as a working fluid. It could be freezing in case of the temperature drops down under freezing point. The anti-freezing fluids such as methyl-alcohol or ethylene-glycol are mixed with the water to protect the freezing phenomena. However, the system developed in this study uses a refrigerant as a working fluid. It makes the system to run under zero degree temperature conditions. Another difference of the developed system compare with commercial available one is auxiliary heating method. The developed system has removed an auxiliary electric heater that has been used in conventional solar assisted heating system. Instead of the auxiliary electric heater, an air source heat exchanger which generally used as an evaporator of a heat pump was adapted as a backup heating device of the developed system. As results, an efficiency of the developed system is higher than a solar assisted heat pump with auxiliary electric heater. The merit of the developed system is on the performance increment when the system operates at a lower solar energy climate conditions. In case of the developed system operates at a normal condition, COP of the solar collector driven heat pump is higher than the air source heat exchanger driven heat pump's.
This paper presents the friction and anti-wear characteristics of nano-oil with n mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear Lising nano-oil is evaluated using the thrust bearing tester for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and orbiting speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing orbiting speed and normal force. The friction coefficient of carbon nano-oil is 0.015, while that of pure oil is 0.023 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oilenhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.
In this work, nucleate pool boiling heat transfer coefficients(HTCs) of 5 refrigerants of differing vapor pressure are measured on horizontal low fin and Turbo-B square surfaces of 9.53 mm length. Tested refrigerants are R32, R22, R134a, R152a and R245fa and HTCs are taken from 10 $kW/m^2$ to critical heat fluxes for all refrigerant at $7^{\circ}C$. Wall and fluid temperatures are measured directly by thermocouples located underneath the test surface and in the liquid pool. Test results show that Critical heat fluxes(CHFs) of all enhanced surfaces are greatly improved as compared to that of a plain surface in all tested refrigerants. CHFs of all refrigerants on the 26 fpi low fin surface are increased up to 240% as compared to that of the plain surface. HTCs on both low fin and Turbo-B surfaces increase with heat flux. After certain heat flux, however, they decrease. CHFs of the Turbo-B enhanced surface are lower than that of the 26 fpi low fin surface. This phenomenon is due to the difference in surface structure of the low fin and Turbo-B surface.
In this work, nucleate pool boiling heat transfer coefficients(HTCs) of 5 refrigerants of different vapor pressure are measured on horizontal Thermoexcel-E square surface of 9.53 mm length. Tested refrigerants are R32, R22, R134a, R152a and R245fa. HTCs are taken from 10 $kW/m^2$ to critical heat fluxes for all refrigerant at $7^{\circ}C$. Wall and fluid temperatures are measured directly by thermocouples located underneath the test surface and in the liquid pool. Test results show that critical heat fluxes(CHFs) of Thermoexcel-E enhanced surface are greatly improved as compared to that of a plain surface in all tested refrigerants. CHFs of all refrigerants on the Thermoexcel-E surface are increased up to 100% as compared to that of the plain surface. The improvement of Thermoexcel-E surface in CHF, however, is lower than that of the low fin surface. HTCs on Thermoexcel-E surface increase with heat flux. But after certain heat flux, HTCs began to decrease due to the difficulty in bubble removal caused by the inherent complex nature of this surface. Therefore, at heat fluxes close to the critical one, sudden decrease in HTCs needs to be considered in thermal design with Thermoexcel-E surface.
잉여전력 등을 활용한 에너지저장시스템 분야에 기술에 관심이 집중되고 혁신적인 기술진보가 이루어지고 있다. 다양한 에너지저장시스템 분야 중 가스액화 방식을 활용한 액화공기에너지저장 시스템은 상당히 성숙된 기술로 알려져 있고, 높은 단위 에너지 밀도와 설치에 따른 지형적 제약이 거의 없으며 수명이 긴 저장 시스템이라는 많은 장점에도 불구하고, 단일공정 (공기액화-재기화 사이클)의 낮은 사이클 효율로 인해 상업화에 한계가 있었다. 본 연구에서는 낮은 사이클 효율을 개선하고자 2종류의 냉매(R-600a 와 메탄올)을 이용한 냉매사이클을 공기 액화 공정에 활용하여 사이클 효율을 향상시키고, 공기 압축시 발생하는 압축열을 열매체유 순환 사이클에 이용하여 이를 액화공기 재기화 공정의 터빈 입구 온도를 높이는데 활용하여 전력생산량을 추가적으로 증가시킴으로써 사이클 효율을 획기적으로 향상시킬 수 있는 가능성을 Aspen HYSYS 공정 모사 프로그램을 활용하여 확인하였다.
본 연구에서는 슬릿 휜-관 열교환기의 공기측 압력강하 특성을 실험적으로 고찰하였다. 물을 작동유체로 사용한 기존의 실험은 공기측 압력강하에 대해 일관된 방법을 제시하지 못하고 있다. 따라서 본 연구에서는 R22를 적용하여 휜-관 열교환기의 전표면과 습표면에 공기측의 압력강하 특성을 나타내는 표준 방법을 제시하고자 하였다. 기존의 실험 상관식과 본 연구에서 제시한 실험 데이터를 증발기와 응축기의 설계조건에서 레이놀즈수와 f-factor의 관계식으로 나타내었다. 본 실험은 공기의 속도가 $0.38{\sim}1.6\;m/s$ 일 때 냉매의 질량 유속 범위를 $150{\sim}250\;kg/m^2s$하여 수행하였다.
Various types of refrigerators become popular in the market such as a common refrigerator, kimchi refrigerator and wine cellar. It is required to develop a multi type refrigerator combining these refrigerators to save space and energy consumption. In this study, the performance of a multi type refrigerator, which consists of one machine room and three evaporators, was measured in a bench type multi refrigerator. The multi type refrigerator was tested by varying the number of refrigerator cabinet, refrigerant charge, and temperature conditions. In addition, the multi type refrigerator with a suction line heat exchanger(SLHX) was tested to improve system performance. Based on the experimental data, the multi type refrigerator showed better performance than the conventional refrigerator(single type system). Besides, the COP of the single system increased from 1.0 to 1.37, and those of the dual and triple system increased from 1.29 to 1.39, and 1.22 to 1.51, respectively, by applying the SLHX.
In order to develop the compact and flexible heat exchangers, we made the helically coiled heat exchangers. They can be manufactured with small diameter copper tubes without the need for fins; inner diameter=1.0 mm, straight tube length=1.5 m. The experiments were carried out with the following conditions; evaporation pressure=0.6 MPa, air velocity=0.7 ∼ 1.7 m/s, and working fluid=R-22. Pressure drop and heat transfer coefficient of heat exchangers were experimented according to the air velocity. The results of heat transfer coefficient show a 35% beneficial increase fur these heat exchangers over the other covered fin-tube heat exchangers. A cooling capacity of about 3 kW was obtained with an air velocity of 1.5 m/s. The distribution header has also been designed fur efficient distribution of refrigerant flow.
International Journal of Air-Conditioning and Refrigeration
/
제13권2호
/
pp.107-118
/
2005
An experimental investigation was made to study two-phase flow distribution in a T-type distributor of slit fin-and-tube heat exchanger using R-22. Experiments were carried out under the conditions of saturation temperature of $5^{\circ}C$ and mass flow rate varying from 0.6 to 1.2kg/min. The inlet air has dry bulb temperature of $27^{\circ}C$, relative humidity of 50% and air velocity varying from 0.63 to 1.71m/s. A comparison was made between the predictions from the previously proposed tube-by-tube method and the present experimental data for the heat transfer rate of evaporator. Results show that $82.5\%$ increase of air velocity is needed for T-type distributor with four outlet branches than that of two outlet branches under the superheat of $5^{\circ}C$, which resulted in increasing of air-side pressure drop of $130\%$ for the former as compared to the latter.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.