• Title/Summary/Keyword: Refrigerant Property

Search Result 25, Processing Time 0.019 seconds

Characteristic of Quenching Refrigerant for Heat Treatment Deformation Control of SM45C Steel

  • Lyu, Sung-Ki
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.647-654
    • /
    • 2002
  • This study deals with the characteristic of quenching refrigerant for heat treatment deformation control of SM45C steel. Heat-treatment deformation must be controlled for the progress of production parts for landing gear. Most of deformation is occurred on inconsistent cooling. The inconsistent cooling is caused by a property of quenching refrigerant. When a heated metal is deposited in the quenching refrigerant, the cooling speed is so slow in early period of cooling because of a steam-curtain. After additional cooling, the steam-curtain is destroyed. In this progress, the cooling speed is very fast. The object of this study is to control the deformation of heat-treatment for landing gear by improving the conditions of quenching. The cooling curves and cooling rates of water, oil and polymer solution are obtained and illustrated. From the characteristics of the quenching refrigerant, the effects of heat-treatments on thermal deformation and fatigue strength are also investigated.

Numerical analysis on the impeller of chiller compressor using refrigerant R12 (R12 냉매를 이용한 냉동압축기 임펠러 유동해석)

  • Eum, Hark-Jin;Kang, Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.696-701
    • /
    • 2001
  • The performance and the internal flow of the impeller of the centrifugal chiller compressor with refrigerant R12 as working fluid were studied numerically, using CFD code, CFX-Tascflow, which is commercially available. In this numerical study, the thermodynamic and transport properties of the refrigerant gas were generated by the property program of NIST and linked with main program to extend the capability of the code to refrigerant gases. Numerical study was applied to several mass flow rates near the design mass flow rate at constant rotating speed. Overall performance and flow characteristics of the impeller at impeller exit were investigated. The results were physically reasonable and showed good agreement with experimental measurement at the design flow rate.

  • PDF

Current State and Future of Refrigerants for Refrigeration and Air Conditioning

  • Kagawa, Noboru
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.4
    • /
    • pp.182-190
    • /
    • 2007
  • Refrigeration and air-conditioning equipments are indispensable products in this civilized society. However, discharged refrigerants used in the equipments and exhausted carbon dioxide to drive the refrigeration and air-conditioning equipments are related to serious environmental problems and energy problems. Especially, the destroyed ozonosphere by the discharged refrigerants and the increased normal temperature by carbon dioxide and fluorocarbon refrigerants (green house gases) are sounded as serious global problems. For alleviating these problems, environmental-friendly refrigeration and air-conditioning equipments must be developed and will spread soon. To develop new equipment, a suitable refrigerant for each usage must be presented. In this paper, the current state of refrigerants was introduced. And, thermophysical properties of the refrigerants were introduced briefly. From the properties, the refrigerants and refrigeration cycles are promising to be used in the future, were proposed

Performance Analysis of the Flooded Refrigerant Evaporators for Large Tonnage Compression-Type Refrigerators Using Alternative Refrigerants (대체냉매를 적용한 대형 압축식 냉동기의 만액식 증발기에 대한 성능 해석)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.18-25
    • /
    • 2016
  • Enhanced tubes are used widely in the evaporators of large tonnage compression-type refrigerators. The evaporators consist of tube bundles, and the refrigerant properties are dependent on the locations in the tube bundles. In particular, the saturation temperatures of low pressure refrigerants (R-11, R-123) are strongly dependent on the locations due to the saturation temperature-pressure curve characteristics. Therefore, for the proper design of evaporators, local property predictions of the refrigerants are necessary. In this study, a computer program that simulates the flooded refrigerant evaporators was developed. The program incorporated theoretical models to predict the refrigerant shell-side boiling heat transfer coefficients and pressure drops across the tube bundle. The program adopted an incremental iterative procedure to perform row-by-row calculations over the specified incremental tube lengths for each water-side pass. The program was used to simulate the flooded refrigerant evaporator of the "T" company operating with R-123, which yielded satisfactory results. The program was extended to predict the performance of the flooded refrigerant evaporator operating with R-11, R-123, and R-134a. The effects of bundle aspect ratio are investigated.

Characteristic of Refrigerant for Heat-treatment Deformation Control of SCM415 Steel (SCM415강의 열처리 변형제어를 위한 냉각 매질의 특성)

  • Ahn, Min-ju;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.59-65
    • /
    • 2010
  • This study deals with the characteristic of refrigerant for heat-treatment deformation control of SCM415 steel. The control of heat-treatment deformation must need the progress of production parts for an industry machine. Most of the deformation is occurred on unequal cooling. The unequal cooling is occurred by a property of quenching refrigeration. When a heated metal is deposited in the refrigeration, the cooling speed is so slow in early period of cooling because of occurring a steam-curtain. After more cooling, the steam-curtain is destroyed. In this progress, the cooling speed is very fast. The object of this study is to control the deformation of heat-treatment for the part of the industry machine by improving the conditions of quenching. The cooling curves and cooling rates of water, oil and polymer solution are obtained and illustrated. From the characteristics of the quenching refrigerant, the effects of heat-treatments on the thermal deformation and fatigue strength are also investigated.

The Performance Analysis of the Fin-Tube Heat Exchanger Using CFC Alternative Refrigerant (CFC 대체냉매를 사용한 핀-관 열교환기의 성능해석)

  • 박희용;박경우;차재병
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2358-2372
    • /
    • 1993
  • In this study, the computer modeling for prediction of the performance of fin-tube heat exchanger using alternative refrigerant, HFC-134a was developed and the computer program for calculating the various properties of HFC-134a and the existing refrigerant CFC-12 and HCFC-22 was made. The heat exchanger modeling is based on a tube-by-tube approach, which is capable of analysis for the complex coil array. Performance of each tube is analyzed separately by considering the cross-flow heat transfer with external airstream and the appropriate heat and mass transfer relationships. A performance comparison according to the different refrigerants is provided using this developed model. As the result of this study, total heat transfer rate of evaporator and condenser using HFC-134a were found higher than that of using CFC-12 for the same operating conditions. When the mass flow rate of HFC-134a was less than CFC-12 about 18. 16%, the cooling capacities of evaporator were found to be the same.

Characteristic of Refrigerant for Heat-treatment Deformation Control of SM45C Steel (SM45G강의 열처리변형 제어를 위한 냉각매질의 특성)

  • Lyu, S.;Nam, T.;Ahn, M.;Park, J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.5
    • /
    • pp.330-336
    • /
    • 2000
  • This study deals with the characteristic of refrigerant for heat-treatment deformation control of SM45C steel. The control of heat-treatment deformation must need the progress of production parts for a landing gear. Most of the deformation is occurred on unequal cooling. The unequal cooling is occurred by a property of quenching refrigeration. When a heated metal is deposited in the refrigeration, the cooling speed is so slow in early period of cooling because of occurring a steam-curtain. After more cooling, the steam-curtain is destroyed. In this progress, the cooling speed is very fast. The object of this study is to control the deformation of heat-treatment for landing gear by improving the conditions of quenching. The cooling curves and cooling rates of water, oil and polymer solution are obtained and illustrated. From the characteristics of the quenching refrigerant, the effects of heat-treatments on thermal deformation and fatigue strength are also investigated.

  • PDF

Estimation of Thermodynamic Properties of Refrigerant Mixtures Using a Modified Carnaha-Starling Equation of State (수정된 Carnahan-Starling 상태방정식을 이용한 혼합냉매의 물성계산)

  • 김민수;김동섭;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2189-2205
    • /
    • 1991
  • Thermodynamic properties of binary nonazeotropic refrigerant mixtures are estimated by using a modified Carnhan-Starling equation of state. In this study, pure component refrigerants such as R14, R23, R13, R13 B1, R22, R12, R134a, R152a, R142b, RC318, R114, R11, R123 and R113 are chosen and the thermodynamic properties of enthalpy and entropy are calculated in terms of relevant variables. The modified Carnahan-Starling equation of state is compared with the carnahan-Staring-De Santis equation of sate. Results show that the relative errors become slightly smaller with the equation of state proposed in this study. Correlations are obtained for the mixtures of which the vapor liquid equilibruim data are available to us in the literature. Those mixtures are R14/R23, R23/R12, R13/R12, R13/R11, R13B1/R22, R13B1/RC318, R12/RC138, R12/R114 and R12/R11. The binary interaction coefficients are found under the condition of minimizing the pressure deviations at the vapor liquid equiblibrium state and the estimation of the vapor liquid equilibrium for the refrigerant mixtures is done. Pressure-enthalpy and temperature-entropy diagrams are plotted for the refrigerant mixtures of specific composition.

Thermodynamic Properties of R-32(Difluoromethane) and Initial Evaluation of Thermodynamic Perfomance as A R-22 Alternative Refrigerant (대체냉매 R-32(Difluoromethane)의 열역학적 물성과 R-22 대체냉매로서 열역학적 성능의 초기 평가)

  • Park, Y.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.2
    • /
    • pp.141-155
    • /
    • 1993
  • Thermodynamic properties of R-32 are calculated and its refrigeration performance is evaluated for the purpose the feasibility study of replacing R-22 with R-32. (1) Refrigeration effect of R-32 is superior to that of R-22 because heat of evaporation of R 32 is about 50% higher than that of R-22. However, COP of R-32 system is 10-30% lower than that of R-22 system. It is mainly attributed to the vapor pressore of R-32 being about 62% higher than R-22. (2) Since the pressure ratio and the specific heat ratio of R-32 system is higher than those of R -22, compressor discharging temperature rises as high as to $130-150^{\circ}C$. It may cause mechanical failure of compressor due to the breakdown of lubricant. Compressor should be improved to lower the temperature if R-32 is to replace R-22. (3) Averaged two-phase heat transfer coefficient of R-32 is about 10-20% higher than that of R-22. It may assume better heat exchanger effectiveness but not guarantee the better COP of R-32 system than R-22. (4) The high vapor pressure is the first reason to drop R-32 out of the line of R-22 alternative refrigerant. So, refrigerant mixtures based on R-32 are recommended to adjust the vapor pressure first and keep superior volumetric capacity of R-32.

  • PDF

External Condensation Heat Transfer Coefficients of R1234yf (신냉매 R1234yf의 외부 응축 열전달계수)

  • Park, Ki-Jung;Lee, Cheol-Hee;Kang, Dong-Gyu;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.6
    • /
    • pp.345-352
    • /
    • 2010
  • In this study, external condensation heat transfer coefficients(HTCs) of R134a and R1234yf are measured on a plain, low fin, and Turbo-C tubes at the saturated vapor temperature of $39^{\circ}C$ with the wall subcooling of $3{\sim}8^{\circ}C$. R1234yf is a new alternative refrigerant of low greenhouse warming potential for replacing R134a which is one of the greenhouse gases controlled by Kyoto protocol and is used extensively in mobile air-conditioners. Test results show that the external condensation HTCs of R1234yf are very similar to those of R134a for all three surfaces tested. For the application of condensation heat transfer correlations to the design of condensers charged with R1234yf, thorough property measurements are needed for R1234yf in the near future.