• Title/Summary/Keyword: Refrigerant Compressor

Search Result 352, Processing Time 0.021 seconds

Performance analysis of the reciprocating compressor with hydrocarbon refrigerant mixtures, R290/R600a (탄화수소계(R290/R600a) 혼합냉매를 적용한 왕복동형 압축기 성능 해석)

  • 김종헌;정연구;박경우;박희용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.270-280
    • /
    • 1999
  • A performance analysis simulation program that can be applied to a hermetic reciprocating compressor with various refrigerants has been developed. For the numerical analysis, the passage of refrigerant in compressor is subdivided into control volumes. Instead of the ideal gas assumption, CSD equation of state is applied to calculate the thermodynamic properties of refrigerants. To verify the validity of developed program, the result has been compared with the experimental data served by the compressor supplier. The performance of each refrigerant and the possibility of direct application are estimated by applying R12, 134a, R290, R600a and R290/R600a mixture to an existing compressor. Also, parametric study for various crank rotating speeds and the mole fractions of refrigerant has been performed.

  • PDF

Defect classification of refrigerant compressor using variance estimation of the transfer function between pressure pulsation and shell acceleration

  • Kim, Yeon-Woo;Jeong, Weui-Bong
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.255-264
    • /
    • 2020
  • This paper deals with a defect classification technique that considers the structural characteristics of a refrigerant compressor. First, the pressure pulsation of the refrigerant flowing in the suction pipe of a normal compressor was measured at the same time as the acceleration of the shell surface, and then the transfer function between the two signals was estimated. Next, the frequency-weighted acceleration signals of the defect classification target compressors were generated using the estimated transfer function. The estimation of the variance of the transfer function is presented to formulate the frequency-weighted acceleration signals. The estimated frequency-weighted accelerations were applied to defect classification using frequency-domain features. Experiments were performed using commercial compressors to verify the technique. The results confirmed that it is possible to perform an effective defect classification of the refrigerant compressor by the shell surface acceleration of the compressor. The proposed method could make it possible to improve the total inspection performance for compressors in a mass-production line.

Performance Analysis of the Swash Plate Type Compressor using CO2 Refrigerant (CO2용 사판식 압축기 성능 해석)

  • Lee, Geon-Ho;Park, Ik-Seo
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.564-569
    • /
    • 2005
  • Recently, from the viewpoint of global wanning, natural gas CO2 is considered as a main refrigerant for hot water system. The characteristics of CO2 is not toxic, not flammable, high pressure, and high refrigerating capacity. Also it is widely available as a byproduct of industrial processes. This paper describes the performance analysis program of the swash plate type compressor using CO2 refrigerant. Estimates of the refrigerant flow rate, compression work, discharge temperature and volumetric, compressor efficiencies of the CO2 swash plate type compressor are obtained from the various design parameter such as the inclination angle of the swash plate, discharge hole area and suction hole area.

  • PDF

The Friction Characteristics of the Journal Bearing in the Refrigerant Compressor

  • Cho, Ihn Sung;Baek, Il Hyun;Oh, Seok Hyung;Jung, Jae Youn
    • KSTLE International Journal
    • /
    • v.1 no.2
    • /
    • pp.113-117
    • /
    • 2000
  • The rotary-vane compressor has become one of the most successful types of compressors because of its mechanical reliability, compactness, and adaptability to moderately high-speed operation in virtually an unlimited range of sizes. However recently, the depletion of the ozone layer due to the current refrigerant(R22) has been getting worse, and it is one of the world's pressing issues. In this paper, we will discuss the use of R410a in the compressor of a room air-conditioner as an alternative refrigerant and air-conditioning system to R22, since R410a has greater refrigerant characteristics than R22. Miniaturization of the rotary compressor for the new refrigerant and air-conditioning system is also possible, which reduces the prime cost of production, hence R410a is naturally a better refrigerant. But to apply the new HFC refrigerant system in refrigeration and air-conditioning systems, a significant redesign of the current refrigerant system is also required, because as the refrigeration changes, lubrication characteristics vary. Close attention must be paid to friction force and energy loss due to friction and wear at many sliding areas.

  • PDF

Optimum Design of Hermetic Compressor Joumal Bearing with Alternative Refrigerant Application (대체냉매 적용에 따른 밀폐형 압축기 저널베어링의 최적설계)

  • 이규한;김정우;이장희
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.218-227
    • /
    • 1998
  • Present study is undertaken to optimize the lubrication reliability and frictional loss of the dynamically-loaded journal bearing in hermetic reciprocating compressor with alternative refrigerant R600a application. Thermodynamic and dynamic analysis has been conducted to investigate cylinder pressure variations by substitution alternative refrigerant R600a for R12. The modeling of the dynamics of the compressor mechanism has been performed with lumped mass method. A mathematical model is developed for analyzing the dynamics of the journal bearing system with the mobility method. It takes into account the effects of the refrigerant species, aspect ratio, clearance ratio and surface roughness. A corresponding computer program is described which enables to obtain the minimum film thickness and frictional loss. Design optimization is graphically performed by parametric studies of the aspect ratio and clearance ratio.

  • PDF

Development of Performance Analysis Program and the Study of Substitution Refrigerant R1234yf for Vehicle Refrigerant Compressor (차량용 냉매 압축기의 성능 해석 프로그램 개발 및 대체 냉매 R1234yf에 관한 연구)

  • Lee, Tae-Jin;Kim, Ki-Beom;Lee, Seung-Won;Lee, Geon-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.699-704
    • /
    • 2011
  • The compressor's efficiency affects on the fuel consumption of the vehicle because the compressors for car air-conditioning system are operated by engine-driven. Especially, the refrigerant is being changed recently from R134a to substitution refrigerant to protect environment pollution that people concerned about. However, that leads to lower efficiency of the car airconditioning system and worse fuel consumption of the vehicle. Thus, this paper is focused on the methods for improvement of the compressor's efficiency that affects on the fuel consumption of the vehicle by numerical analysis for compressor's performance and the measurement of cylinder volume and pressure when the compressor is being operated.

A Study on the Decrease of Compressor Discharge Temperature Using Subcooling Bypass Technology (Subcooling Bypass Technology를 적용한 압축기 토출 냉매 온도 감소에 관한 연구)

  • Kwak, Kyung-Min;Bai, Cheol-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.6
    • /
    • pp.326-332
    • /
    • 2009
  • The purpose of the study is to decrease the refrigerant temperature at the outlet of the compressor under high thermal load conditions for air cooled vapor compression refrigeration system. The subcooling bypass line called subcooling bypass technology(SBT) is installed to the window type A/C system to investigate the performance test. The standard air calorimeter test method is applied to measure the refrigerant temperature at the outlet of the compressor, cooling capacity, power consumption, and system EER. The refrigerant temperature at the outlet of the compressor decreases as the bypass rate increases. When the bypass rate is 8.2%, the refrigerant temperature at the outlet of the compressor decreases $2.8^{\circ}C$ while the cooling capacity and EER are the same as the conventional A/C unit.

The Lubrication Characteristics of Rotary Compressor for Refrigeration & Air-Conditioning (Part I ; The analysis of rolling piston behavior) (냉동 공조용 로터리 콤프레서의 윤활 특성 제1보 : 롤링 피스톤의 거동해석)

  • 조인성;오석형;정재연
    • Tribology and Lubricants
    • /
    • v.12 no.4
    • /
    • pp.43-51
    • /
    • 1996
  • Rapid increase of refrigeration & air-conditioning system (r & a system) in modem industries brings attention to the urgency of research & development as a core technology in the area. And it is required to the compatibility problem of r & a system to alternative refrigerant for the protection of environment. Then, it is requested to study the lubrication characteristics of refrigerant compressor which is the core technology in the r & a system. The study of lubrication characteristics in the critical sliding component is essential for the design of refrigerant compressor. Therefore, theoretical investigation of the lubrication characteristics of rotary compressor for r & a system is studied. The Runge-Kutta method is used for the analysis of the behavior of rolling piston in the rotary compressor. The results show that the rotating speed of shaft and the discharge pressure have an important effect upon the angular velocity of the rolling piston. This results give important basic data for the further lubrication analysis and design of the rotary compressor.

Performance of a Refrigerant Heating Type Heat Pump by Changing of Driving Devices and Heat Exchangers (구동장치 및 열교환기 변경에 따른 냉매가열식 열펌프의 성능특성)

  • Park, Youn-Cheol;Kim, Sang-Hyuk;Kim, Ji-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.49-56
    • /
    • 2008
  • When the outdoor air temperature decreased less than the freezing temperature, frost forms at the surface of heat exchangers and it makes the performance degradation of a heat pump system. In this study, a heat pump system has been developed which has a refrigerant heating device as an auxiliarly heating equipment. To reduce power consumptions of the system, a liquid pump, rather than a compressor, was used to drive refrigerant in the heat pump cycle. Ratio of refrigerant mass flow between a refrigerant heating heat exchanger(GHX) and a outdoor plate heat exchanger(PHX) was varied and the system performance was measured and analyzed. As results, when the refrigerant flow rate to the GHX was decreased, the system performance is decreased due to heat absorption capability restriction of the GHX and small variation of the power consumption in the compressor. The effect on the evaporating and condensing pressure by the distribution ratio of the refrigerant to the each heat exchanger is small compare to the effect by the frequency change in the compressor. When the compressor was replaced by the liquid pump, the capacity of the system decreased a little, however the power consumption decrease approximately 80% compare with the power used in the compressor.

Experimental Study on the Performance of Heat Pump Using Refrigerant Mixture R22/R142b (R22/R142b 혼합냉매를 사용한 열펌프의 성능)

  • Kim, M.S.;Chang, S.D.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.1
    • /
    • pp.33-47
    • /
    • 1992
  • Experimental investigation on the performance of a heat pump system using refrigerant mixtures is done. The condenser and the evaporator are double pipe heat exchangers of counter flow type and the compressor is driven by a variable speed motor. The refrigerant mixture used in the experiment is R22/R142b. Experiments are performed by changing the compressor speed, composition on ratio of mixture, and the average temperatures of condenser and evaporator. The compressor work, heating capacity and the coefficient of performance are calculated. Results show that the heating capacity can be changed by varying the mass flow rate of refrigerant mixtures to meet the heating load. It is shown that the capacity control by changing the composition ratio is more effective than by changing the compressor speed. Under the condition where the external conditions are fixed and the heating loads are equal, the coefficient of performance has its maximum value near 50 : 50 mass fraction of the refrigerant mixture in this study.

  • PDF