• Title/Summary/Keyword: Refractory organics

Search Result 18, Processing Time 0.021 seconds

Leachate Treatment using Intermittently Aerated BAC-Fluidizing Bed (간헐폭기 생물활성탄 유동상에 의한 매립지침출수 처리)

  • Kim, Kyu Yeon;Lee, Dong Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.136-147
    • /
    • 2005
  • Leachate from landfill sites contains high organics, chloride and ammonium nitrogen in concentration which might be potentially major pollutants to surface and groundwater environment. Most of landfill leachate treatment plants in Korea consist of biological processes to remove BOD and nitrogen. However, the efficiencies of refractory organics removal, nitrification and denitrification have not met frequently the national effluent regulation of wastewater treatment facility, especially in winter season. Simultaneous removal of organics and nitrogen from leachate is strongly necessitated to meet the national regulation on effluents from leachate treatment facilities. The intermittently aerated biological activated carbon fluidized bed(IABACFB) process was applied to treat real landfill leachates containing refractory organics and high concentration of ammonium nitrogen. The IABACFB reactor consisted of a single bed in which BAC fluidizing and an aerating column. The fluidized bed is intermittently aerated through the blower located at the aerating column. Experiments were performed to evaluate the applicability of Intermittently Aerated BACFB for simultaneous removal of refractory organic carbon and ammonium nitrogen of leachate. Organics and ammonia nitrogen($NH{_4}{^+}-N$)are oxidized during the aerobic stage, and nitrite-nitrate nitrogen($NO{_x}{^-}-N$) are removed to nitrogen gas through denitrification reaction during anoxic state. The IABACFB reactor condition reached a steady state within 40 days since the reactors had been operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) simultaneously than the mode of 30 min.-On/90 min.-OFF. The average removal efficiencies of TOC, the refractory organic carbon, and the average efficiencies of nitrification and denitrification were 90%, 75%, 80%, 95%, respectively.

  • PDF

Effects of Sewage Effluent on Organic Matters of Nakdong River: Comparison of Daily Loading (낙동강 수계 내 하수처리 방류수가 하류 하천 유기물에 미치는 영향: 부하량 비교)

  • Seong, Jin-Uk;Park, Je-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.210-217
    • /
    • 2012
  • This study investigated the water quality of effluents from the wastewater treatment plants, located at the Gumi Complex 4, Gumi, and Wonpyong, in Gumi. DOC accounted for higher than 70% of TOC, and oxidation efficiencies, calculated from carbon, were 13~43% for BOD and 37~73% for CODMn, respectively. Based on the biological decomposition experiments, R-DOC account for higher than 70% of DOC, mostly being occupied by refractory organic matters. This indicated that the biodegradable organics occupied more proportions of organic loadings than the refractory organics. The effect of the organics from a discharge of a sewage treatment plant on rivers, Gumi industrial Complex 4, Gumi, and Wonpyong on lower streams of the Nakdong River were found to be 15%, 6% and 16% respectively. The ratio of 15% suggests that comparatively, no large portions of TOC loadings are occupied, but the problem is that the biodegradable organic matters occupy a lot more proportions than that of the refractory organic matters. Thus, it is highly estimated that the refractory organics can gradually increase the pollution level of organics and precursors of disinfection by-products to the down-stream water treatment plants.

Evaluation of Affecting Factors for Refractory Organics Accumulated in the Lakes (호소의 난분해 물질 축적 영향요인의 평가)

  • Kim, Sungwon;Kim, Geonha;Choi, Euiso
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.720-726
    • /
    • 2006
  • Long-term monitoring results of water qualities at major lakes in Korea showed COD (chemical oxygen demand) concentrations have been increasing while BOD (biochemical oxygen demand) concentrations have been decreasing during last decades. This was mainly due to refractory organic matters have been accumulated in the water body. In this study, the possible causes of COD concentration increase were evaluated. From the statistics, it can be understood that potent pollutant sources including fertilizer consumption, population, livestock, and carbon uptake have increased. Leaching tests were carried out with soils and biomasses sampled at agricultural-forestry area. From the leaching experiments, leachate qualities as a ratio of $COD_{Cr}/BOD$ were in the range of 2.5-5.0, implying that NOM (natural organic matters) discharged from the forestry area was mainly responsible for the COD accumulation. It can be understood from this research that diffuse pollutants from forestry areas should be controlled properly to reduce COD accumulation in the lakes.

Fenton난s Reagent Oxidation of Refractory Organics in Petrochemical Plant Effluent (석유화학공장 방류수내 난분해성 유기물의 Fenton 산화처리)

  • Lee, Kyu-Hoon;Jung, Dae-Young;Park, Tae-Joo
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.51-59
    • /
    • 1996
  • The purpose of this study was to evaluate the partial oxidation of the biological treatment plant effluents using Fenton's reagent as a pretreatment step prior to a tertiary biological oxidation of these effluents. Fenton's reagent was evaluated as a pretreatment process for inhibitory or refractory organics. Based on the Fenton oxidation system, the petrochemical wastewater treatment plant effluent was shown to have significant improvement in toxicity after oxidation with hydrogen peroxide. For example, at ranee of 42 ∼ 184 mg/L COD of petrochemical plant effluents, the COD removal efficiencies were from 38.2% to 60.1% after reaction with hydrogen peroxide 200 mg/L and Fe2+ 100 mg/L and reaction time was 30 minutes. The total TOC reduction were about 15.8∼22.4% with same test condition and difference between the overall removal rate and BOD/COD ratio after Fenton's oxidation estabilished in the biodegradation and otherwise meets the discharge standard or reuse for cooling tower make-up water.

  • PDF

Removal of Ammonia Nitrogen and Organics from Piggery Wastewater Using BACC Process-II. Effect of COD/N on Removal of NItrogen and Organics (BACC를 이용한 축산폐수의 암모니아성 질소 및 유기물의 제거 II. COD/N비가 질소 및 유기물 제거에 미치는 영향)

  • 성기달;류원률;김인환;조무환
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.140-145
    • /
    • 2001
  • To treat piggery wastewater containing refractory compounds including nitrogen, physical treatments using zeolite and biological processes were investigated. In biogical treatment, the removal efficiencies of organics and nitrogen in bioreador using BACC (Biological Activated Carbon Cartridge) media filled with granule activated carbon were examined. The best removal efficiencies achieved for TKN and COD(sub)cr were 82% and 53% respectively, when zeolite dosage was 300 g/L. Specific nitrogen removal ability was 3.2 mg/g at a zeolite dosage of 50 g/L, whereas specific nitrogen removal ability was 1.8 mg/g at a zeolite dosage of 300 g/L. The increased of C/N ratio resulting from the removal of nitrogen using zeolite led to an increase in removal efficiency of organics. As C/N ratio was increased to 2.0, 2.44 and 6.58 at a HRT of 48 hours in a BACC bioreactor, removal efficiencies of COD(sub)cr were increased to 53.5%, 57.4% and 80.6%. The removal efficiency of wastewater using a zeolite dosage of 399 g/L was increased by 27.1% compared to that of control treatment.

  • PDF

A Study on the Treatment of Refractory Organics by Redox Reaction of Cu-Zn Metal Alloy (Cu-Zn 금속 합금의 산화.환원 반응에 의한 난분해성 COD처리에 관한 연구)

  • Song, Ju-Yeong;Park, Ji-Won;Kim, Jong-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.166-172
    • /
    • 2013
  • The purpose of this study is to evaluate the treatment ability of refractory organics in hot rolling precess waste water by redox(reduction and oxidation) reaction. Metal is oxidized in an aqueous solution to generate electron which can reduce water to generate hydroxy radical. These hydroxy radical is very effective to conduct hydrogen abstraction reaction and addition reaction to the carbon - carbon unsaturated link. The surface area of metal alloy reaction material is more than enough to get equilibrium at a single treatment. The efficiency of COD treatment by redox reaction showed maximum at mild pH of pH 7 and pH 6. But it was not effective in acidic atmosphere of pH 3, 4, 5 and basic atmosphere of pH 8 or over. Redox reaction system in much more helpful in a commercial coagulation sedimentation treatment than exclusive system.

A Comparative Study of Catalytic Ozone processes for Removal of Refractory Organics (난분해성 유기물질 제거를 위한 오존/촉매 공정의 비교에 관한 연구)

  • Lee, Gyu-Hwan;Lee, Yu-Mi;Rhee, Dong-Seok
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.199-205
    • /
    • 2006
  • Ozone alone and catalytic ozone processes were introduced for treatment of humic acid, which is representative refractory organic compound. The treatment efficiencies of humic acid in each process were analyzed in pH variation, DOC removal, and $UV_{254}$ decrease. Mn loaded GAC catalyst was prepared by loading potassium permanganate onto the granular activated carbon surface. BCM-GAC and BCM-Silica gel catalyst were prepared by BCM. $UV_{254}$ decrease in all processes was comparatively high with efficiency over 87%. DOC removal in ozone/GAC process was the highest with 78%, and removal rates for other processes followed the order ozone/BCM-GAC(62%) > ozone/BCM-silica gel(45%) > ozone/silica gel(43%) > ozone/Mn Loaded GAC(42%) > ozone alone(37%).

  • PDF

PAC Pretreatment for Ultrafiltration of RBC Effluent (PAC-한외여과막을 이용한 회전원판 처리수의 고도처리)

  • Ahn, Kyu-Hong;Song, Kyung-Guen;Park, Joon-Hong;Kweon, Ji-Hyang;Kim, Hyung-Soo;Kwak, Jong-Woon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.2
    • /
    • pp.70-79
    • /
    • 1996
  • Ultrafiltration(UF) and powdered activated carbon(PAC) adsorption were combined to treat wastewater contaminated with refractory organic compounds. Secondary sewage effluent of RBC process was used for the investigation. It was determined from batch test results that a contact time of 2 hours and a PAC dose of 450mg/l would be used in the experiments. Backwashing was accomplished by forcing the permeates back ward with pressure of $2.5kgf/m^2$ for 90 seconds. It was shown that refractory organics removal by the PAC-UF process was more efficient than UF process without PAC pretreatments. As backwashing frequency was decreased from four times to one time in an hour, the removal efficiency was significantly increased. The addition of PAC to the UF process mitigated the fluctuation of filtrate quality which was increased in UF process without PAC treatment as transmembrane pressure was increased.

  • PDF

Preparation and electrochemical characterization of Ziconuim oxide ($ZrO_2/Ti$ 막의 제조와 전기화학적 성질)

  • Hong, Kyeong-Mi;Son, Won-Keun;Kim, Tae-Il;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.191-193
    • /
    • 2005
  • This study has investigated the effects of the etching method of a Ti substrate for a metal oxide electrode on the electrochemical characteristics of the electrode. The HCl etching develops a fine and homogeneous roughness on the Ti substrate. Fabrication and material properties of the catalytic oxide electrode, which is known to be so effective to destruct refractory organics in aqueous waste, were studied. A method to enhance the fabrication reproducibility of the oxide electrode was tested for Ru, Zr, Sn oxide on the Ti substrate using SEM, XRD, Cyclic voltammetry.

  • PDF

A study on the dye wastewater treatment by Fenton oxidation process (Fenton 산화공법을 적용한 염색폐수처리 연구)

  • Ahn, June-Shu;Park, Tae-Sool;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4274-4282
    • /
    • 2011
  • In this study, Fenton reaction was studied for the possibility of applying as advanced treatment and its optimal condition for the removal of refractory organics from the dye wastewater. Fenton reaction was applied to remove refractory organics after the bio-treatment (secondary treatment) inside test laboratory and on-site pilot plant. Wastewater from the secondary treatment was used and its $COD_{Mn}$ was measured as 30~50mg/L. After the Fenton reaction, the optimal condition was found as pH 3~3.5, reaction time 2~2.5hr, chemical input ratio of ($FeCl_2$(33%)/$H_2O_2$(35%)) was 3 : 1. When chemical input ratio of ($FeCl_2$(33%)/$H_2O_2$(35%)) was at its optimal, amount of sludge volume ($SV_{2hr}$) was 21~28%. With pilot plant test, removal rate was heavily influenced by the hydraulic retention time(HRT), and optimum value of HRT was 2.0 hr. When pilot plant($2m^3/d$) was placed on-site and operated continuously, it showed steady and fairly good treatment of COD where COD removal rate was 60~70%, treated water showed below 20mg/L.