• Title/Summary/Keyword: Refractory Materials

Search Result 173, Processing Time 0.023 seconds

Manufacturing of Eco-Friend Concrete Block using Recycled Materials (순환자원을 활용한 환경친화형 콘크리트 블록 제조)

  • Lee, Jae-Jin;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.389-394
    • /
    • 2017
  • The aim of the research is providing the application method of recycled materials to manufacture the low costed eco-friend block at currently operated concrete block plant. In this research, based on the previous research results on three types of slag cement with illite, desulfurized gypsum, and wasted refractory products, the actual block product was manufactured by the currently operated plant facility and evaluated their properties to suggest the optimal proportions. As an experimental results, in aspect of compressive strength, absorption ratio, freezing resistance, and pH, type III slag incorporating 5% desulfurized gypsum with 1% replaced illite as an aggregate could be suggested as am optimal proportion. In additionally, considering the high cost of the illite, it can be considered as an optimal proportion that type III slag incorporating 5% desulfurized gypsum for binder.

Environment Emission and Material Flow Analysis of Chromium in Korea

  • Shin, Dong-won;Kim, Jeong-gon
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.187-196
    • /
    • 2015
  • With the stabilization of Korea's industrialization, it has become interested in the efficient use of rare metals, climate change and industrial environment and safety etc. It is thus making efforts to implement economic policies that address such issues. Therefore it is necessary to understand the demand, supply and use of metal materials. Since 2010, the Korean government has developed the integrated material flow methodology and has been trying to examine the demand, supply and use of metal materials. In 2013, the Korean government surveyed the material flow of chromium. Material flow analysis and environment emission of chromium were investigated 8 steps; (1) raw material, (2) first process, (3) Intermediate product, (4) End product, (5) Use/accumulation, (6) Collection, (7) Recycling, (8) Disposal. Chromium was used for stainless steel, alloy steel, coated sheets, refractory material and coating materials. Recycling was done mainly in use of stainless steel scrap. To ensure efficient use of chromium, process improvement is required to reduce the scrap in the intermediate product stage. In the process of producing of the products using chromium, it was confirmed that chromium was exposed to the environment. It requires more attention and protection against environment emission of chromium.

Corrosion of castable refractory in H2O/N2/H2S mixed gas at 900℃ (H2O/N2/H2S 혼합가스 분위기 900℃에서 캐스타블 내화물의 부식)

  • Shin, Min;Yoon, Jong-Won;Kim, Chang-Sam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.2
    • /
    • pp.99-104
    • /
    • 2017
  • Refractories used in low-rank coal gasification reactors are usually exposed in a highly corrosive $H_2S$ gas at less than $1000^{\circ}C$, and their mechanical properties such as erosion resistance and fracture strength decline with the exposure time. However, the cause of the degradation of the mechanical properties has little reported yet. In this paper, two kinds of castable refractories with different refractoriness had been exposed in a $H_2O/N_2/H_2S$ mixed gas with high $H_2S$ content for 100 hours at $900^{\circ}C$, and the changes of microstructure, crystalline phases and erosion resistance were compared before and after the corrosion test. The weight of the refractories decreases due to the elution of silica in the specimens after the corrosion test. The capillary porosities of the samples are reduced, but the erosion resistance of the samples is fatally weakened after the corrosion test. There also are changes in constituent phases; dmitryivanovite ($CaAl_2O_4$) and amorphous silica ($SiO_2$) disappear, and gypsum ($CaSO_4{\cdot}2H_2OS$) and kaolinite ($Al_2Si_2O_5(OH)_4$) newly appear after the corrosion test. It is obvious that the phase change from dmitryivanovite that works as a binding agent in the castable refractory to gypsum is the main reason of the degradation of the erosion resistance, because the mechanical properties of gypsum are much poorer than those of dmitryivanovite.

Wetting Behavior of Dolomite Substrate by Liquid Fe-19%Cr-10%Ni Alloy at 1753K

  • Shin, Min-Soo;Lee, Joon-Ho;Park, Joo-Hyun
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.115-118
    • /
    • 2009
  • The use of dolomite refractories has increased during the past several years in the manufacturing of clean steel during the stainless steelmaking process. However, at the same time, the use of dolomite refractories has led to what is known as the skull formation. In the present work, to understand the skull formation, the wetting characteristics of dolomite substrates by liquid Fe-19wt%Cr-10wt%Ni alloys in various oxygen partial pressures were initially investigated at 1753K using the sessile drop technique. For comparison, the wetting characteristics of alumina substrates were investigated with the same technique. It was found that the wetting index, (1+$cos{\theta}$), of dolomite is approximately 40% higher compared to those of alumina. In addition, the oxygen partial pressure to generate the surface oxide, which may capture the liquid metal on the refractory surface, for dolomite is much lower than that for alumina. From this study, it was concluded that the use of dolomite is much more closely associated with the skull formation compared to the use of alumina due to the stronger wettability and the surface oxide formation at a lower oxygen partial pressure of dolomite.

Solvothermal Synthesis of Bi2O2CO3 Nanoplates for Efficient Photodegradation of RhB and Phenol under Simulated Solar Light Irradiation

  • Hu, Sheng-Peng;Xu, Cheng-Yan;Zhang, Bao-You;Pei, Yi;Zhen, Liang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2935-2940
    • /
    • 2014
  • Monodispersed $Bi_2O_2CO_3$ nanoplates with an average width of 320 nm and thicknesses of 50-90 nm were successfully synthesized by a simple solvothermal method in a mixture solution of polyethylene glycol and $H_2O$. The obtained nanoplates were characterized by means of XRD, FT-IR, SEM and TEM. The effect of surfactant sodium dodecyl benzene sulfonate on the morphology of $Bi_2O_2CO_3$ product was investigated. Under simulated solar light irradiation, $Bi_2O_2CO_3$ nanoplates exhibited superior photocatalytic activities towards the degradation of RhB as well as high chemical stability upon cycling photocatalytic test. The nanoplates also showed promising photodegradation ability for eliminating refractory pollutant of phenol. The excellent photocatalytic performance of $Bi_2O_2CO_3$ nanoplates as compared with P25-$TiO_2$ endows them as promising high efficiency photocatalysts.

Ablative Characteristics of Carbon/Carbon Composites by Liquid Rocket

  • Joo, Hyeok-Jong;Min, Kyung-Dae;Lee, Nam-Joo
    • Carbon letters
    • /
    • v.2 no.3_4
    • /
    • pp.192-201
    • /
    • 2001
  • The Carbon/Carbon composite was prepared from 3D carbon fiber preform and coal tar pitch as matrix precursor. In order to evaluate of ablative characteristics of the composite, liquid rocket system was employed Kerosene and liquid oxygen was used as propellants, operating at a nominal chamber pressure of 330 psi and a nominal mixture ratio (O/F) of 2.0. The results of an experimental evaluation were that high density composite exhibited high, while low density composites showed low erosion resistance. The erosion rate against heat flux was highly depended on the density of the materials. The morphology of eroded fiber showed differently according to collision angle with heat flux on the composite. The granular matrix which derived from carbonization pressure of 900 bar was more resistance to heat flux than well-developed flow type matrix.

  • PDF

Synthesis of $Al_2O_3$-SiC-C refractory powders by Self-propagating High Temperature Synthesis (연소합성법을 이용한 $Al_2O_3$-SiC-C 계 내화분말 합성의 최적조건 결정)

  • 강충일;윤존도
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.205-205
    • /
    • 2003
  • 우리나라에서는 많은 양의 폐분진이 발생하며 경남지역에서는 연간 3만톤의 폐분진이 발생한다. 매년 폐기물의 발생량은 증가하고 있으며 폐분진류의 주성분은 실리카와 알루미나가 주성분을 이룬다. 특히 주조, 제강 등 금속공업에서 발생하는 분진은 입자가 미세한 다량의 실리카와 알루미나로 이루어져 있어 탄화규소(SiC) 및 알루미나-탄화규소-탄소(A1$_2$O$_3$-SiC-C)계 내화물 제조에 분쇄공정 없이 세라믹스의 원료로 활용할 수 있다. 현재 알루미나-탄화규소-탄소(Al$_2$O$_3$-SiC-C)계 내화물 제조를 위해 제조공정이 간단한 연소합성법을 이용하지만 분말제조 공정 중 분위기 조절에 많은 비용이 요구되고 있어 시급한 대안이 필요한 상태이다.

  • PDF

Characteristics of $\textrm{Al}_2\textrm{O}_3$-CaO Refractory Prepared from Oyster Shells (굴패각으로부터 제조된 $\textrm{Al}_2\textrm{O}_3$-CaO내화물의 특성)

  • Ryu, Su-Chak;Park, Hong-Chae
    • Korean Journal of Materials Research
    • /
    • v.8 no.1
    • /
    • pp.23-26
    • /
    • 1998
  • 알루미나와 하소된 귤껍질의 소결반응에 의해 A $I_{2}$ $O_{3}$-CaO내화물이 제조되었다. 치밀화과정에서의 CaO의 영향과 A $I_{2}$ $O_{3}$-CaO 소결체의 특성을 고찰하였다. 소결체의 미세구조와 EDS 결과로 A $I_{2}$ $O_{3}$-CaO화합물을 확인하였다. 145$0^{\circ}C$에서 열처리한 소결체는 2.87/㎤의 부피비중과 12.03%의 겉보기 기공율을 가지며 압축강도는 312kg/$\textrm{cm}^2$이였다. 140$0^{\circ}C$에서 서결체의 열팽창 계수는 6.55Kx10$_{-6}$ $K_{-1}$이였다.

  • PDF

The Effect of Pressure on the Properties of Carbon/Carbon Composites during the Carbonization Process

  • Joo, Hyeok-Jong;Oh, In-Hwan
    • Carbon letters
    • /
    • v.3 no.2
    • /
    • pp.85-92
    • /
    • 2002
  • 4D carbon fiber preforms were manufactured by weaving method and their carbon fiber volume fractions were 50% and 60%. In order to form carbon matrix on the preform, coal tar pitch was used for matrix precursor and high density carbon/carbon composites were obtained by high densification process. In this process, manufacture of high density composites was more effective according to pressure increasement. When densificating the preform of 60% fiber volume fraction with 900 bar, density of the composites reached at 1.90 $g/cm^3$ after three times processing. Degree of pressure in the densification process controls macro pore but it can not affect micro pore. During the carbonization process, micro pore of the preform were filled fully by once or twice densification processing. But micro pore were not filled easily in the repeating process. Therefore, over three times densification processing is the filling micro pore.

  • PDF

Fabricability of Reaction-sintered SiC for Ceramic Heat Exchanger Operated in a Severe Environment (원자력 극한환경용 세라믹 열교환기 소재로서 반응소결 SiC 세라믹스 제작성)

  • Jung, Choong-Hwan;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.52-56
    • /
    • 2011
  • Silicon carbide (SiC) is a candidate material for heat exchangers for VHTR (Very High Temperature Gas Cooled Reactor) due to its refractory nature and high thermal conductivity. This research has focused on demonstration of physical properties and mock-up fabrication for the future heat exchange applications. It was found that the SiC-based components can be applied for process heat exchanger (PHE) and intermediate heat exchanger (IHX), which are operated at $400{\sim}1000^{\circ}C$, based on our examination for the following aspects: optimum fabrication technologies (design, machining and bonding) for compact design, thermal conductivity, corrosion resistance in sulfuric acid environment at high temperature, and simulation results on heat transferring and thermal stress distribution of heat exchanger mock-up.