• Title/Summary/Keyword: Refractive Index

Search Result 1,316, Processing Time 0.025 seconds

Nondestructive Optical Measurement of Refractive-index Profile of Graded-index Lenses

  • Lee, Byoung-Hwak;Shin, Nae-Ho;Jeong, Kwan;Park, Myoung-Jin;Kim, Byung-Gyu;Yoo, Jang-Hoon;Kim, Dae-Geun;Yun, Ki-Hyuck;Lee, Kew-Seung;Kim, Kyung-Hwan;Kim, Dae-Kyu;Park, Seung-Han
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.468-471
    • /
    • 2009
  • We propose a simple nondestructive method to obtain refractive-index profiles of a graded-index (GRIN) light-focusing rod by means of a diffraction grating. In our proposed method, a laser beam is illuminated through a diffraction grating perpendicular to the axis of the GRIN lens and the separation between the zeroth and first-order diffraction peaks is measured and analyzed. The results demonstrate that the refractive-index profiles of commercially available GRIN lenses can be successfully reconstructed.

Refractive index control of F-doped SiOC : H thin films by addition fluorine (Fluorine 첨가에 의한 F-doped SiOC : H 박막의 저 굴절률 특성)

  • Yoon, S.G.;Kang, S.M.;Jung, W.S.;Park, W.J.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.2
    • /
    • pp.47-51
    • /
    • 2007
  • F-doped SiOC : H thin films with low refractive index were deposited on Si wafer and glass substrate by plasma enhanced chemical vapor deposition (PECVD) as a function of rf powers, substrate temperatures, gas rates and their composition flow ratios ($SiH_4,\;CF_4$ and $N_2O$). The refractive index of the F-doped SiOC : H film continuously decreased with increasing deposition temperature and rf power. As $N_2O$ gas flow rate decreased, the refractive index of the deposited films decreased down to 1.3778, reaching a minimum value at rf power of 180W and $100^{\circ}C$ without $N_2O$ gas. The fluorine content of F-doped SiOC : H film increased from 1.9 at% to 2.4 at% as the rf power was increased from 60 W to 180 W, which results in the decrease of refractive index.

Thermal Properties and Refractive Index of $B_2O_3-Al_2O_3-SiO_2$ Glasses for Photolithographic Process of Barrier Ribs in PDP (PDP의 격벽 형성 공정인 감광성 공법에서 $B_2O_3-Al_2O_3-SiO_2$계 유리 조성의 열적 특성과 굴절률 변화)

  • Hwang, Seong-Jin;Won, Ju-Yeon;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.321-321
    • /
    • 2008
  • To obtaingood resolution in PDP, one of the important factors is to achieve the accuracy of barrier ribs. The photolithographic process can be used to form patterns of barrier rib with high accuracy and a high aspect ratio. The composition for photolithography is based on the $B_2O_3-SiO_2-Al_2O_3$ glass system including additives such as alkali oxides and alkali earth oxides. The refractive index and thermal properties in glass system are changed by amount of alkali oxides and alkali earth oxides. Therefore, it is important that additives are controlled to have proper refractive index and thermal properties. The additives are contributed to non-bridging oxygen within the glass network, causing a change of density. In addition to a change of the structural cross-link density, the refractive index, dielectric and thermal properties glass are correlated with ionic radius and polarizability of cations. In this study, we investigated the refractive index and the thermal properties such as glass transition temperature, glass softening temperature and coefficient of thermal expansion by changing composition in the $B_2O_3-SiO_2-Al_2O_3$ glass system.

  • PDF

Science Teachers' Perception of the Refractive Index of Media (굴절률에 대한 과학교사들의 인식)

  • Park, Sang-Tae;Yeom, Jun-Hyeok;Yoon, Yeo-Won;Seok, Hyojun
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.334-338
    • /
    • 2017
  • This research aims at investigating science teachers' perception of the refractive index of materials, and thus achieving proper information transmission and teaching of refractive index. Specifically, we have made questionnaires on what physical factors influence the refractive index of a liquid easily available in secondary schools. It was found that 80.0% of science teachers perceived that the density has the greatest influence on the refractive index, among a variety of factors such as molecular structure, the number of molecules per unit volume, mass of each molecule, and the wavelength of light, to mention just a few. This may be due to the fact that current textbooks deal with the refraction of light based on analogy to a mechanical wave. Such a misunderstanding may lead to confusion and misunderstanding for students.

Measurement of the Refractive Index of a Mixed Polymer by a Prism Spectrometer and its Application (프리즘 분광계를 이용한 혼합 폴리머의 굴절률 측정과 응용)

  • Kim, Ji-Young;Ju, Young-Gu
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.221-228
    • /
    • 2017
  • We measured the refractive index of a mixed polymer (NOA61, NOA84) in the liquid and solid states. First we made a hollow prism and filled it with UV (ultraviolet) epoxy. Measurement of the apex angle and the minimum-deviation angle gave the refractive index of the liquid polymer. To measure the refractive index of the solid polymer, an additional structure was included in the hollow prism, and the UV epoxy filling in the hollow prism was hardened. In both cases of liquid and solid polymers, the refractive index of the mixed polymer turned out to be proportional to the mix ratio. These results provide a method to vary the focal length of a double stacked cylindrical microlens array using UV epoxy.

Measurement of the Thickness and Refractive Index of a Thin Film Using a Double-slit Experiment (이중 슬릿 회절 실험을 이용한 박막의 두께와 굴절률 측정)

  • Kim, Hee Sung;Prak, Soobong;Kim, Deok Woo;Kim, Byoung Joo;Cha, Myoungsik
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.4
    • /
    • pp.159-166
    • /
    • 2022
  • We measured the thickness and refractive index of a thin film using a double-slit diffraction experiment. The amount of phase step in the transmitted light generated by the thin film on the transparent substrate was measured by analyzing the diffraction pattern from the double slits. Experiments were conducted not only in air but also in distilled water, to determine thickness and refractive index simultaneously. To verify the validity of this method, we compared our values for thickness and refractive index to those measured using the well-established waveguide-coupling method. The suggested method is expected to be applied as a new method to simultaneously measure the thickness and refractive index of thin films, along with existing methods.

Separation Algorithm for 2D Refractive Index Distribution and Thickness Measurement of Transparent Objects using Multi-wavelength Source (다파장 광원을 이용한 위상 물체의 2 차원 굴절률 분포와 두께 측정을 위한 분리 알고리즘)

  • Lee, Kwang-Chun;Ryu, Sung-Yoon;Lee, Yun-Woo;Kwak, Yoon-Keun;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.72-78
    • /
    • 2009
  • We propose the separation algorithm to simultaneously measure two-dimensional refractive index distribution and thickness profile of transparent samples using three wavelengths. The optical system was based on the Mach-zehnder interferometer with LD (Laser Diode)-based multi-wavelength sources. A LCR (Liquid Crystal Retarder) was used to obtain interference images at four phase states and then the optical phase of the object is calculated by four-bucket algorithm. Experimental results with a glass rod are provided at the different wavelengths of 635nm, 660nm and 675nm. The refractive indices of the sample are distributed with accuracy of less than 0.0005 and the thickness profile of sample was cylindrical type. This result demonstrates that it is possible to separate refractive index distribution and thickness profile of samples in two dimensions using the proposed algorithm.

Polarizing Group Attached Acrylates and Polymers Viewing High Refractive Index

  • Kwon, Ji-Yun;Kim, Bong-Gun;Do, Jung-Yun;Ju, Jung-Jin;Park, Seung-Koo
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.533-540
    • /
    • 2007
  • We designed and successfully synthesized UV curable, functional acrylate monomers having a polarizing group, i.e., an electron-withdrawing and/or electron-donating group for the optical materials of high refractive index. Optical polymer films made from the functional methacrylate monomers were achieved with photo crosslinking under UV illumination. A monomer having amino and cyano groups (Dimer-CN) exhibited the highest refractive index ($n_{TE}$=1.595 at 850nm) among the studied methacrylate derivatives, due to the large polarizability of the dipolar monomer structures with electron-donating and withdrawing groups. By controlling the compositions of the functional acrylate monomer of copolymers, the refractive indices of the polymers were readily adjusted within a wide range of 1.498-1.595. The copolymers showed a high glass transition temperature $(T_g)$ and good thermal stability, which are desirable for optical applications. $T_g$ and $T_{10%}$ (10%-weight loss occurred) of the copolymers ranged from $120-140^{\circ}C$ and from $329-387^{\circ}C$, respectively.

Effect of process parameter of DC pulsed sputtering on optical reflectance of multi-layer thin films (DC펄스 스퍼터링 공정 변수가 다층 박막의 광 반사율에 미치는 영향)

  • Chung, Youn-Gil;Park, Hyun-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.9-12
    • /
    • 2016
  • The process parameters of DC pulsed sputtering to produce a multi-layer thin film with light reflectance at a specific wavelength region were studied. The optical simulation of multi-layer thin films of the silicon dioxide ($SiO_2$) films with a low refractive index and the titanium dioxide ($TiO_2$) films with a high refractive index was done. Under a DC pulsed sputtering power of 2kW and 200 sccm(standard cubic centimeter per minute) argon gas, the silicon dioxide films with a refractive index of 1.46 in the range of oxygen gas ratios of 12% and a titanium dioxide film with a refractive index of 2.27 in the range of oxygen gas ratios of 1% were produced. The multi-layer structure of high refractive index/low refractive index/high refractive index was designed and fabricated. The characteristics of the fabricated multi-layer thin film structure showed a reflectance of more than 45% in the range, 780 to 1200nm. This multi-layer structure is expected to be used to block the near infrared wavelength light.