• Title/Summary/Keyword: Reformer

Search Result 293, Processing Time 0.024 seconds

Computational Analysis for Improving Internal Flow of High Pressure Methanol Steam Reformer Pressure Vessel (고압형 메탄올 수증기 개질기 압력용기의 내부 유동 개선을 위한 전산 해석)

  • YU, DONGJIN;JI, HYUNJIN;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.411-418
    • /
    • 2020
  • A reformer is a device for producing hydrogen used in fuel cells. Among them, methanol steam reformer uses methanol as fuel, which is present as a liquid at room temperature. It has the advantage of low operating temperature, high energy density, and high hydrogen production. The purpose of this study is to improve the internal flow of the pressure vessel when a bundle of methanol steam reformer in the pressure vessel goes out to a single outlet. An analysis of equilibrium reaction to methanol steam reforming reaction was conducted using Aspen HYSYS® (Aspen Technology Inc., Bedford, USA), and based on the results, computational analysis was conducted using ANSYS Fluent® (ANSYS, Inc., Canonsburg, USA). For comparison of the results, the height of the pressure vessel, outlet diameter, and fillet was set as variables, and the optimum geometry was selected by comparing the effects of gravity and the amount of negative pressure.

A Study on the Optimum Design for LTCC Micro-Reformer: Design and performance evalution of monolith fuel reformer/PROX (LTCC를 소재로 하는 마이크로 리포머의 최적 설계에 관한 연구 ; 일체형 Reformer/PROX 반응기의 설계 및 성능평가)

  • Chung, C.H.;Oh, J.H.;Jang, J.H.;Jeong, M.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.10a
    • /
    • pp.615-616
    • /
    • 2006
  • A micro-fuel processor system integrating steam reformer and partial oxidation reactor was manufactured using low temperature cofired ceramic (LTCC). A CuO/ZnO/$Al_2O_3$ catalyst and Pt-based catalyst prepared by wet impregnation were used for steam reforming and partial oxidation, respectively. The performance of the LTCC micro-fuel processor was measured at various operating conditions such as the effect of the feed flow rate, the ratio of $H_2O/CH_3OH$, and the operating temperature on the LTCC reformer and CO clean-up system. The catalyst layer was loaded with "Fill and Dry" coating for small volume. The product gas was composed of $70\sim75%$ hydrogen, $20\sim25%$ carbon dioxide, and $1\sim2%$ carbon monoxide at $250\sim300^{\circ}C$, respectively.

  • PDF

The Performance & Operation Analysis of a Plate Type Reformet for 2 kW Class MCFC Stack (2 kW급 MCFC용 평편형 개질기 운전결과)

  • Seo, Hal-Kung;Ahn, Kyo-Sang;Lim, Hee-Chun;Lee, Sang-Deuk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.2
    • /
    • pp.159-167
    • /
    • 2002
  • The operation results of the 2kW class plate type reformer, which has several advantages compared with the tubular burner type reformer, are analyzed. This plate type reformer is composed of six combustion chambers and five reforming chambers by turns. The methane conversion rate at 1.6 absolute pressure is about 84%, which is reasonably similar to theoretical value, 85.3%. Though the abrupt interruption was made just by the carbon deposition during heating the fuel line to combustion chambers around 200 hours operation, the overall steady state operation is more than 450 hours. These operation results show the verification of long run performance and the possibility of direct connection between plate reformer and fuel cell stack.

Numerical Study on Operating Parameters and Shapes of a Steam Reformer for Hydrogen Production from Methane (천연가스로부터 수소를 생산하기 위한 수증기 개질기의 작동조건과 형상에 대한 수치해석 연구)

  • Park, Joong-Uen;Lee, Shin-Ku;Lim, Sung-Kwang;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.60-68
    • /
    • 2009
  • The steam reformer for hydrogen production from methane is studied by a numerical method. Langmuir- Hinshelwood model is incorporated for catalytic surface reactions, and the pseudo-homogeneous model is used to take into account local equilibrium phenomena between a catalyst and bulk gas. Dominant chemical reactions are Steam Reforming (SR) reaction, Water-Gas Shift (WGS) reaction, and Direct Steam Reforming (DSR) reaction. The numerical results are validated with experimental results at the same operating conditions. Using the validated code, parametric study has been numerically performed in view of the steam reformer performance. As increasing a wall temperature, the fuel conversion increases due to the high heat transfer rate. When Steam to Carbon Ratio (SCR) increases, the concentration of carbon monoxide decreases since WGS reaction becomes more active. When increasing Gas Hourly Space Velocity (GHSV), the fuel conversion decreases due to the heat transfer limitation and the low residence time. The reactor shape effects are also investigated. The length and radius of cylindrical reactors are changed at the same catalyst volume. The longer steam reformer is, the better steam reformer performs. However, system energy efficiency decreases due to the large pressure drop.

Numerical Study on Correlation between Operating Parameters and Reforming Efficiency for a Methane Autothermal Reformer (천연가스 자열개질기를 위한 작동조건과 개질효율의 상관관계에 대한 수치해석 연구)

  • Park, Joon-Guen;Lee, Shin-Ku;Lim, Sung-Kwang;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.636-644
    • /
    • 2008
  • The objective of this paper is to investigate characteristics of an autothermal reformer at various operating conditions. Numerical method has been used, and simulation model has been developed for the analysis. Pseudo-homogeneous model is incorporated because the reactor is filled with catalysts of a packed-bed type. Dominant chemical reactions are Full Combustion reaction, Steam Reforming(SR) reaction, Water-Gas Shift(WGS) reaction, and Direct Steam Reforming(DSR) reaction. Simulation results are compared with experimental results for code validation. Operating parameters of the autothermal reformer are inlet temperature, Oxygen to Carbon Ratio(OCR), Steam to Carbon Ratio(SCR), and Gas Hourly Space Velocity(GHSV). Temperature at the reactor center, fuel conversion, species at the reformer outlet, and reforming efficiency are shown as simulation results. SR reaction rate is improved by increased inlet temperature. Reforming efficiency and fuel conversion reached the maximum at 0.7 of OCR. SR reaction and WGS reaction are activated as SCR increases. When GHSV is increased, reforming efficiency increases but pressure drop from the increased GHSV may decrease the system efficiency.

The Performance & Operation Analysis of a Steam Reformer for MCFC (MCFC용 Steam Reformer 개질성능 분석 및 운전평가)

  • Seo, Hai-Kung;Koh, Joon-Ho;Lim, Hee-Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.4
    • /
    • pp.149-159
    • /
    • 2000
  • This paper is concerned with the performence of a steam reformer for 25kW class MCFC, which is compared with the theoretically calculated results at various operating conditions. The theoretical $H_2$ production amount and $CH_4$ conversion rate are calculated with variations of temperature and steam/carbon (S/C) ratio using fortran program, and the actual values are measured from flowmeter and gas chromatography. As a result of the comparison of theoretical and actual values, the theoretical $H_2$ production amount is calculated by $24.4m^3/hr$ at the normal operating condition(LNG $9m^3/hr$, S/C ratio 5, absolute pressure $2.77kg/cm^2$, $610^{\circ}C$), but the actual production amount is only $19.4m^3/hr$, which is 79.5% of the theoretical value. Nevertheless, at the normal operating condition, the reformer for 25kW class MCFC performed well for a 2,100 hr long run operation, constantly producing $H_2$.

  • PDF

Effect of Tip Size and Aspect Ratio on Reforming Performance in a Methane Reformer for Polymer Electrolyte Membrane Fuel Cell (PEMFC) (고분자 전해질 막 연료전지를 위한 메탄 개질기에서 형상 변화가 개질 성능에 미치는 영향에 대한 연구)

  • Seo, Dong-Kyun;Noh, In-Kyu;Hwang, Jung-Ho;Choi, Jong-Kyun;Shin, Dong-Hoon;Kim, Hyung-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.364-374
    • /
    • 2010
  • Design of a reformer consisting of combustion chamber and reforming chamber was investigated for a 1 kW and a 5 kW polymer electrolyte membrane fuel cell (PEMFC), respectively, using the computational fluid dynamics (CFD). First, the 1kW reformer was considered to obtain the reliability of the numerical study. It was modeled, calculated and compared with experimental data. Second, the 5kW reformer was considered for a geometric study. Three tip sizes (35, 40, and 45 mm) and five aspect ratios was selected. It was found that the optimum was at tip sizes of 40 and 45 mm, at aspect ratios of -10% and -20% of the standard length.

Effect of Pilates Reformer Training on Gait Improvement of Subjects with Asymmetric Pelvic Rotation (필라테스 리포머 운동이 비대칭 골반 돌림을 가진 대상자의 보행 개선에 미치는 효과)

  • Moon, Ok-Kon;Han, Song-E
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.271-278
    • /
    • 2013
  • The purpose of this study was to determine the effect of Pilates Reformer training on gait improvement of subjects with asymmetric pelvic rotation. The seven subjects with greater pelvic rotation in right swing were assessed twice, 4 weeks apart, during which there was submitted to a Pilates Reformer training (three 40 min session per week). The kinematic data consisted of pelvic rotation and flexion angle of hip and knee joint was measured during gait. In comparison between both leg swings, max, min and range values of pelvic rotation was not significantly difference. After training, range of pelvic rotation in right swing was significantly decreased, but in left swing was not. In comparison between both leg swings, the values of max of hip and knee joint angle was significantly difference. After training, max values of angle of knee joint in right swing was significantly increased, but in left swing was not. The result of this study revealed that Pilates Reformer training was effective in improving gait to symmetric pelvic rotation.

A Study on the Development of Ultrasonic Scanning Device for the Inspection and Evaluation of Creep Damage of HK - 40 Reformer Tube Welded Zone (HK-40 고온반응관 용접부의 Creep손상 진단기법 및 자동 초음파탐상장치의 개발에 관한 연구)

  • Cho, K.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.1
    • /
    • pp.98-105
    • /
    • 1989
  • Detection of creep damages in centrifugally cast HK-40 reformer furnace catalyst tube is a common problem for the safety and scheduled operation of chemical plants. This study was focused on the development of an automatic ultrasonic scanning device with which the creep damage of welded zone of HK-40 reformer tubes is detected and evaluated.

  • PDF

A Study on Optimization of Reformer for kW Class SOFC System (kW급 SOFC 시스템용 개질기 최적화)

  • YI, YONG;PARK, SE JIN;KIM, MIN SOO;SHIN, JANG SIK;SHIN, SEOCK JAE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.4
    • /
    • pp.317-323
    • /
    • 2018
  • Solid oxide fuel cell (SOFC) operates at high temperature, therefor has the advantage of higher power generation and using exhaust heat than other fuel cells. In particular, the reforming reaction can be performed inside the SOFC stack to reduce the cooling of the stack and the burden on the reformer reactor. In this study, the reformer structure, operating characteristics, and thermal efficiency were evaluated for the optimization design of a heat exchanger type reformer of a 1 kW SOFC system.