• Title/Summary/Keyword: Reflow

Search Result 315, Processing Time 0.04 seconds

Reflow in Metallization Process (금속 배선 공정에서의 reflow 현상)

  • Lee, Seung-Yun;Park, Jong-Uk
    • Korean Journal of Materials Research
    • /
    • v.9 no.5
    • /
    • pp.538-543
    • /
    • 1999
  • The theory of the reflow applied to metallization process was studied, and the factors affecting the reflow and the relation between the reflow and the grain growth were investigated. The driving force for the metal reflow is the difference in chemical potentials along the metal surface, and it causes the atom movement. On condition that metal interconnect is fabricated for semiconductor devices, surface diffusion is the primary atom movement mechanism. The metal reflow is influenced by reflow temperature, reflow time, reflow ambient, thin film thickness, thin film material, underlayer material, pattern size, and aspect ratio. It is supposed that the reflow characteristic varies according to the grain growth during the reflow, so the effect of the grain growth on the reflow should be considered.

  • PDF

The Effect of Cu Reflow on the Pd-Cu Alloy Membrane Formation for Hydrogen Separation (수소분리용 Pd-Cu 합금 분리막의 Cu Reflow 영향)

  • Mun, Jin-Uk;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.6
    • /
    • pp.255-262
    • /
    • 2006
  • Pd-Cu alloy membrane for hydrogen separation was fabricated by sputtering and Cu reflow process. At first, the Pd and Cu was continuously deposited by sputtering method on oxidized Si support, the Cu reflow process was followed. Microstructure of the surface and permeability of the membrane was investigated depending on various reflow temperature, time, Pd/cu composition and supports. With respect to our result, Pd-Cu thin film (90 wt.% Pd/10 wt.% Cu) deposited by sputtering process with thickness of $2{\mu}m$ was heat-treated for Cu reflow The voids of the membrane surface were completely filled and the dense crystal surface was formed by Cu reflow behavior at $700^{\circ}C$ for 1 hour. Cu reflow process, which is adopted for our work, could be applied to fabrication of dense Pd-alloy membrane for hydrogen separation regardless of supports. Ceramic or metal support could be easily used for the membrane fabricated by reflow process. The Cu reflow process must result in void-free surface and dense crystalline of Pd-alloy membrane, which is responsible for improved selectivity oi the membrane.

Reflow Profiling The Benefits of Implementing a Ramp-to-Spike Profile

  • AIM
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.17-17
    • /
    • 2000
  • The issue of reflow profiling continues to be a complex topic. The pains often associated with profiling can be reduced greatly if certain guidelines are followed and if there is a strong understanding of the variables that can be encountered during the reflow process. This paper shall discuss the appropriate guidelines and trouble shooting methods for reflow profiling, and in particular shall focus upon the benefits of implementing the linear ramp-to-spike profile. Delta T(T) is defined as the variation of temperature found on an assembly during the reflow process. Too large of a T can result in soldering defects, so to combat T a Ramp-Soak-Spike(RSS) reflow profile often is utilized. However, when using a newer-style reflow oven, the T often is minimized or eliminated, thus, the soak zone of the reflow profile becomes an unnecessary step. Because of this, the implementation of a linear Ramp-To-Spike(RTS) reflow profile should be considered. Benefits such as reduced energy costs, reduced solder defects, increased efficiency, improved wetting, and a simplification of the reflow profile process may be experienced when using the RTS profile. Included in this paper are the suggested process parameters for setting up the RSS and RTS profiles and the chemical and metallurgical reactions that occur at each set point of these profiles. The paper concludes with a discussion and pictures of several profile-related defects. Each of these defects is described, analyzed, and instructions are given for troublshooting these defects.

  • PDF

Fabrication of Microlens Array Using Photoresist Thermal Reflow (Photoresist Thermal Reflow를 이용한 Microlens Array 제작)

  • Hwang, Sung-Ki;Baek, Sang-Hoon;Kwon, Jin-Hyuk;Park, Yi-Soon
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.2
    • /
    • pp.118-122
    • /
    • 2009
  • An optical sheet with microlens array (MLA) is designed and fabricated as a substitute for the prism sheets of LCD backlight. Using photoresist thermal reflow, MLAs were fabricated on PET film with thickness of $100{\mu}m$, and we measured the change of MLA profile in terms of exposure time, reflow temperature and reflow time.

Effect of Reflow Time on Mechanical and Electrical Properties of Sn-3.5Ag Solder Joints (Sn-3.5Ag 솔더 접합부의 기계적.전기적 특성에 미치는 리플로우 시간의 효과)

  • Gu Ja-Myeong;Mun Jeong-Hun;Jeong Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.36-38
    • /
    • 2006
  • We investigated that the metallurgical, mechanical and electrical properties of the Sn-3.SAg/Cu ball grid array (BGA) solder joints at a reflow temperature of $255^{\circ}C$ for different reflow times of 10, 60, 300 and 1800 s. Two different intermetallic compound (IMC) layers, consisting of scallop-shaped $Cu_6Sn_5$ and very thin $Cu_3Sn$, formed at the solder/substrate interface, and their thicknesses increased with increasing reflow time. The shear force peaked after reflow for 60 s, and then significantly decreased with increasing reflow time. The fracture occurred along the solder ball in the initial reflow, but the fraction of the brittle fracture increased with increasing reflow time. The IMC growth and the volume of Cu dissolved in the solder balls affected the electrical property.

  • PDF

Interfacial Reaction and Shear Properties with Reflow Conditions for In-48Sn Solder on BGA Package (리플로우 조건에 따른 In-48Sn 솔더와 BGA 패키지의 계면반응 및 전단 특성 변화)

  • 구자명;이영호;김대곤;김대업;정승부
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.193-195
    • /
    • 2003
  • Micro-structure and shear properties with reflow conditions, reflow temperature and time, for In-48Sn solder on BGA package were examined at the temperature between 140 and 170$^{\circ}C$ for 10 to 3600sec. With increasing reflow temperature and time, the thickness of intermetallic compound formed between solder and pad increased. Shear test indicated shear force increased in the range to a critical value of reflow time, and decreased over a critical reflow time. With increasing reflow temperature and time, the crater occurred on fracture surface because of a increase of crater by voids and IMC particles precipitated in solder.

  • PDF

A Study on the Nonwet Defective Factors of the SMT Process (SMT 공정 Nonwet 불량 인자에 대한 연구)

  • Yun, Chanhyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.35-39
    • /
    • 2020
  • Nonwet (Head in Pillow) defect is one of the defects in SMT (surface mount technology) process, the defect is caused by several factors, such as solder paste misalignment, reflow condition, package warpage and package ball size. This paper focused on ① reflow condition ② package ball & solder paste misalignment ③ package ball size for nonwet experiment. The first, on the case of reflow condition, there would be high risk of nonwet defect when the soldering time was increased, but N2 was adopted to reflow process, there could be no or low risk of nonwet defect because of oxidation barrier control. And when the contact depth between Solder ball and solder paste was below 20 ㎛, there could be high risk of nonwet defect. Also smaller package ball would have low risk of nonwet defect.

Interfacial Reactions of Sn Solder with Variations of Under-Bump-Metallurgy and Reflow Time (Under Bump Metallurgy의 종류와 리플로우 시간에 따른 Sn 솔더 계면반응)

  • Park, Sun-Hee;Oh, Tae-Sung;Englemann, G.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.3
    • /
    • pp.43-49
    • /
    • 2007
  • Thickness of intermetallic compounds and consumption rates of under bump metallurgies (UBMs) were investigated in wafer-level solder bumping with variations of UBM materials and reflow times. In the case of Cu UBM, $0.6\;{\mu}m-thick$ intermetallic compound layer was formed before reflow of Sn solder, and the average thickness of the intermetallic compound layer increased to $4\;{\mu}m$ by reflowing at $250^{\circ}C$ for 450 sec. On the contrary, the intermetallic layer had a thickness of $0.2\;{\mu}m$ on Ni UBM before reflow and it grew to $1.7\;{\mu}m$ thickness with reflowing for 450 sec. While the consumption rates of Cu UBM were 100nm/sec fur 15-sec reflow and 4.50-sec for 450-sec reflow, those of Ni UBM decreased to 28.7 nm/sec for 15-sec reflow and 1.82 nm/sec for 450-sec reflow.

  • PDF

A Study on the Reflow Characteristics of Cu Thin Film (구리 박막의 Reflow 특성에 관한 연구)

  • Kim, Dong-Won;Gwon, In-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.124-131
    • /
    • 1999
  • Copper film, which is expected to be used as interconnection material for 1 giga DRAM integrated circuits was deposited on hole and trench patterns by Metal Organic Chemical Vapor Deposition(MOCVD) method. After a reflow process, contact and L/S patterns were filled by copper and the characteristics of the Cu reflow process were investigated. When deposited Cu films were reflowed, grain growth and agglomeration of Cu have occurred in surfaces and inner parts of patterns as well as complete filling in patterns. Also Cu thin oxide layers were formed on the surface of Cu films reflowed in $O_2$ambient. Agglomeration and oxidation of Cu had bad influence on the electrical properties of Cu films especially, therefore, their removal and prevention were studied simultaneously. As a pattern size is decreased, preferential reflow takes place inside the patterns and this makes advantages in filling patterns of deep submicron size completely. With Cu reflow process, we could fill the patterns with the size of deep sub-micron and it is expected that Cu reflow process could meet the conditions of excellent interconnection for 1 giga DRAM device when it is combined with Cu MOCVD and CMP process.

  • PDF

A Study on the Initial Bonding Strength of Solder Ball and Au Diffusion at Micro Ball Grid Array Package (${\mu}BGA$ 패키지에서 솔더 볼의 초기 접합강도와 금 확산에 관한 연구)

  • Kim, Kyung-Seob;Lee, Suk;Kim, Heon-Hee;Yoon, Jun-Ho
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.311-316
    • /
    • 2001
  • This paper presents that the affecting factors to the solderability and initial reliability. It is the factor that the coefficient of thermal expansion between package and PCB(Printed Circuit Board), the quantity of solder paste and reflow condition, and Au thickness of the solder ball pad on polyimide tape. As the reflow soldering condition for 48 ${\mu}BGA$ is changed, it is estimated that the quantity of Au diffusion at eutectic Sn-Pb solder surface and initial bonding strength of eutectic Sn-Pb solder and lead free solder. It is the result that quantitative measurement of Au diffusion quantity is difficult, but the shear strength of eutectic Sn-Pb solder joint is 842 mN at first reflow and increases 879 mN at third reflow. The major failure mode in solder is judged solder fracture. So, Au diffusion quantity is more affected by reflow temperature than by the reflow times.

  • PDF