• Title/Summary/Keyword: Reflection Noise

Search Result 289, Processing Time 0.029 seconds

Laboratory and Field Performance Evaluation of Acryl Resin Based Solar Radiation Reflective Pavement (아크릴 수지를 이용한 차열성 포장의 실내 및 현장 공용성 평가)

  • So, Kyung-Rock;Lee, Hyun-Jong;Baek, Jong-Eun;Lee, Sang-Yum
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.19-28
    • /
    • 2011
  • This study developed a solar radiation reflection pavement, so called a cool pavement, to lessen the urban heat island effect by coating a pavement surface with acrylic resins mixed with light-colored pigments. From a laboratory test, simulating solar heating process in pavements, the cool pavement reduced more than $12^{\circ}C$ of pavement temperature at $60^{\circ}C$ compared to a control porous pavement. With the increase of the mixing ratio of the pigments to acrylic resins, the temperature reduction effect increased, but its workability became worse due to higher viscosity. As a result, an appropriate mixing ratio was determined as 15%. The cool pavement had better durability than the control pavement: One quarter of Catabro loss and twofold dynamic stability. Its adhesion was also higher enough not to be debonded under traffic loading. In-situ noise and friction tests conducted in two field sites showed that the cool pavement reduced its noise level by 3.7dB in average and increased its friction level by 30% compared to the control pavement. The permeability of the cool pavement was little lower than the control pavement, but higher enough to satisfy the minimum requirement for porous pavements.

A Case Study on the Data Processing to Enhance the Resolution of Chirp SBP Data (Chirp SBP 자료 해상도 향상을 위한 전산처리연구)

  • Kim, Young-Jun;Kim, Won-Sik;Shin, Sung-Ryul;Kim, Jin-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.289-297
    • /
    • 2011
  • Chirp sub-bottom profilers (SBP) data are comparatively higher-resolution data than other seismic data and it's raw signal can be used as a final section after conducting basic filtering. However, Chirp SBP signal has possibility to include various noise in high-frequency band and to provide the distorted image for the complex geological structure in time domain. This study aims at the goal to establish the workflow of Chirp SBP data processing for enhanced image and to analyze the proper parameters for the domestic continental shelf. After pre-processing, we include the dynamic S/N filtering to eliminate the high-frequency component noise, the dip scan stack to enhance the continuity of reflection events and finally the post-stack depth migration to correct the distorted structure on the time domain sections. We demonstrated our workflow on the data acquired by domestically widely used equipments and then we could obtain the improved seismic sections of depth domain. This workflow seems to provide the proper seismic section to interpretation when applied to data processing of Chirp SBP that are largely used for domestic acquisition.

Study on Indoor Wireless Environment of mmWave WLAN Communication (초고주파 근거리 통신의 실내 무선 환경 연구)

  • Shin, Dong-Il;Kim, Woo-Seong;Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.16 no.1
    • /
    • pp.147-152
    • /
    • 2018
  • Recently, as the demand for transmission of ultra-high quality media data such as UHD, AR, and VR increases, various technologies for this have been actively developed and IEEE 802.11ad standard have been commercialized. In this paper, a test bed is constructed to analyze the indoor wireless environment using the IEEE 802.11ad standard based on mmWave, and the experimental results of various indoor wireless environments are introduced and analyzed. We compared the data from the module by data transmission, such as signal to noise ratio(SNR) and throughput. And we measured the beam pattern and width of the module and compared the effects on the indoor environment of the corridor and the office. This shows that the signal reflection of the wall shows higher SNR values and is more suitable to use for indoor than outdoor. It is confirmed that the loss when not in line of sight(LoS) is not enough to compensate the wall reflected signal. As a result, it is judged to be suitable for the indoor use of the mmWave LAN and can be usefully used for further experiments.

Shallow Subsurface Structure of the Yaksoo Area, Ulsan, Korea by Geophysical Surveys (물리탐사기법에 의한 울산광역시 약수지역 천부지하구조 조사)

  • Lee, Jung-Mo;Kong, Young-Sae;Chang, Tae-Woo;Park, Dong-Hee;Kim, Tae-Kyung
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.57-66
    • /
    • 2000
  • The location and geometry of the Ulsan Fault play important roles in interpreting tectonic evolution of the southeastern part of the Korean Peninsula. Dipole-dipole electrical resistivity surveys and seismic refraction surveys were carried out in the Yaksoo area, Ulsan in order to measure the thickness of the alluvium covering the Ulsan Fault and to find associated fracture zones and possibly the location of its major fault plane. The collected data were analyzed and interpreted. Some results reported previously by others were also used in this interpretation. No low resistivity anomalies were found in the cross-sectional resistivity image of the survey line located in the east of the Dong River. In contrast, well-developed continuous low resistivity anomalies were detected in the west of the Dong River. This strongly suggests that the major fault plane of the Ulsan Fault is located under or in the west part of the Dong River. Two refraction boundaries corresponding to the underground water level and the bottom of the alluvium were found by refraction surveys carried out on the limited part of the east survey line. The thickness of the alluvium was found to be about 30 m. Small faults in the basement rock identified by reflection surveys were not detected by both resistivity and refraction seismic surveys. This might be explained by assuming that low resistivity anomaly is more closely related to the clay contents than the water contents. On the other hand, it may be resulted by the limited resolution of the resistivity and refraction surveys. Detailed study is required to clarify the reason. Resistivity survey is frequently considered to be a good exploration method to detect subsurface faults. However, it appears to be less useful than reflection seismic survey in this work. In dipole-dipole resistivity survey, the number of separation should be increased to survey deeper subsurface with the same resolution. However, signal to noise ratio decreases as the number of separation increases. In this survey area, the signal to noise ratio of up to sixteen separations was good enough based on the statistical properties of measurements.

  • PDF

A Preprocessing Method for Ground-Penetrating-Radar based Land-mine Detection System (지면 투과 레이더(GPR) 기반의 지뢰 탐지 시스템을 위한 표적 후보 검출 기법)

  • Kong, Hae Jung;Kim, Seong Dae;Kim, Minju;Han, Seung Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.171-181
    • /
    • 2013
  • Recently, ground penetrating radar(GPR) has been widely used in detecting metallic and nonmetallic buried landmines and a number of related researches have been reported. A novel preprocessing method is proposed in this paper to flag potential locations of buried mine-like objects from GPR array measurements. GPR operates by measuring the reflection of an electromagnetic pulse from discontinuities in subsurface dielectric properties. As the GPR pulse propagates in the geologic medium, it suffers nonlinear attenuation as the result of absorption and dispersion, besides spherical divergence. In the proposed algorithm, a logarithmic transformed regression model which successfully represents the time-varying signal amplitude of the GPR data is estimated at first. Then, background signals may be densely distributed near the regression model and candidate signals of targets may be far away from the regression model in the time-amplitude space. Based on the observation, GPR signals are decomposed into candidate signals of targets and background signals using residuals computed from the estimated value by regression and the measurement of GPR. Candidate signals which may contain target signals and noise signals need to be refined. Finally, targets are detected through the refinement of candidate signals based on geometric signatures of mine-like objects. Our algorithm is evaluated using real GPR data obtained from indoor controlled environment and the experimental results demonstrate remarkable performance of our mine-like object detection method.

An improved crystal rotation method for simultaneous measurement of pretilt angle and thickness of a liquid crystal layer (액정셀의 선경사각과 액정층의 두께를 함께 재는 개선된 결정회전법)

  • Son, Gong-Sook;Park, Chan;Park, Hee-Gap;Kim, Jin-Seung;Rho, Bong-Gyu;Lee, Hyong-Jong;Kim, Jae-Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.213-218
    • /
    • 1996
  • An improved crystal rotation method with increased accuracy and range is proposed and experimentally verified for simultaneous measurement of molecular tilt angle and thickness of LC (liquid crystal) layer of an LC cell. The improvement is brought about by direct determination of difference between phases instead of intensities of two components of orthogonal linear polarization of the light passing through an LC cell filled with uniformly oriented molecules. By comparing the experimental data with theoretical result the thickness and pretilt angle are determined more precisely. Further improvement is brought about by use of a liquid gate filled with an index matching liquid in which the LC cell is immersed. Because of the index matching liquid reflection of light at the surfaces of an LC cell almost completely disappears and the range of angle of refraction in the LC layer increases significantly, which gives rise to increased signal to noise ration as well as decreased statistical error. With this improvement precise measurement for either very thin (<10 ${\mu}{\textrm}{m}$) and/or higher pretilt angle($\geq$10$^{\circ}$) LC cells become possible.

  • PDF

The Study of Near-field Scanning Microwave Microscope for the Nondestructive Detection System (비파괴 측정을 위한 근접장 마이크로파 현미경 연구)

  • Kim, Joo-Young;Kim, Song-Hui;Yoo, Hyun-Jun;Yang, Jong-Il;Yoo, Hyung-Keun;Yu, Kyong-Son;Kim, Seung-Wan;Lee, Kie-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.508-517
    • /
    • 2004
  • We described a near-field scanning microwave microscope which uses a high-quality dielectric resonator with a tunable screw. The operating frequency is f=4.5 5GHz. The probe tip is mounted in a cylindrical resonant cavity coupled to a dielectric resonator We developed a hybrid tip combining a reduced length of the tapered part with a small apex. In order to understand the function of the probe, we fabricated three different tips using a conventional chemical etching technique and observed three different NSMM images for patterened Cr films on glass substrates. We measured the reflection coefficient of different metal thin film samples with the same thickness of 300m and compared with theoretical impedance respectly. By tuning the tunable screw coming through the top cover, we could improve sensitivity, signal-to-noise ratio, and spatial resolution to better than $1{\mu}m$. To demonstrate the ability of local microwave characterization, the surface resistance of metallic thin films has been mapped.

Cable Fault Detection Improvement of STDR Using Reference Signal Elimination (인가신호 제거를 이용한 STDR의 케이블 고장 검출 성능 향상)

  • Jeon, Jeong-Chay;Kim, Taek-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.450-456
    • /
    • 2016
  • STDR (sequence time domain reflectometry) to detect a cable fault using a pseudo noise sequence as a reference signal, and time correlation analysis between the reference signal and reflection signal is robust to noisy environments and can detect intermittent faults including open faults and short circuits. On the other hand, if the distance of the fault location is far away or the fault type is a soft fault, attenuation of the reflected signal becomes larger; hence the correlation coefficient in the STDR becomes smaller, which makes fault detection difficult and the measurement error larger. In addition, automation of the fault location by detection of phase and peak value becomes difficult. Therefore, to improve the cable fault detection of a conventional STDR, this paper proposes the algorithm in that the peak value of the correlation coefficient of the reference signal is detected, and a peak value of the correlation coefficient of the reflected signal is then detected after removing the reference signal. The performance of the proposed method was validated experimentally in low-voltage power cables. The performance evaluation showed that the proposed method can identify whether a fault occurred more accurately and can track the fault locations better than conventional STDR despite the signal attenuation. In addition, there was no error of an automatic fault type and its location by the detection of the phase and peak value through the elimination of the reference signal and normalization of the correlation coefficient.

Reflection Signal Analysis for Time Division Multiplexing of Fiber Optic FBG Sensors (광섬유 FBG 센서의 시간 분할 다중화를 위한 반사 신호의 분석)

  • Kim, Geun-Jin;Kwon, Il-Bum;Yoon, Dong-Jin;Hwang, Du-Sun;Chung, Young-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.1
    • /
    • pp.6-12
    • /
    • 2010
  • Fiber optic sensor using fiber Bragg grating(FBG) probes is used for monitoring strain and temperature distributed on the wide surfaces of large structures. In this paper, in order to use many FBG probes in one optical fiber line, we propose a complex multiplexing technology which is composed of two techniques, one is time division multiplexing and another is wavelength division multiplexing. However, we only investigate the characteristics of time division multiplexing because FBG sensors basically can be operated by wavelength division multiplexing. We calculate the optimal reflectivities and the lengthwise location of five FBG probes in serial connection in order to obtain the unique reflected intensities from the FBG probes. We fabricate five FBG probes with the reflectivities of 13%, 16%, 25%, 40% and 80%, which are determined by the theoretical calculation, and observe the signal reflected from each FBG in the time domain from the experiment. There are differences between experimental and theoretical results caused by the signal noise and the differences of reflectivities of FBG probes. But the experimental results shows the reflected signals of five FBG probes which prove the availability of complex multiplexing.

Current Status of the Synchrotron Small-Angle X-ray Scattering Station BL4C1 at the Pohang Accelerator Laboratory

  • Jorg Bolze;Kim, Jehan;Huang, Jung-Yun;Seungyu Rah;Youn, Hwa-Shik;Lee, Byeongdu;Shin, Tae-Joo;Moonhor Ree
    • Macromolecular Research
    • /
    • v.10 no.1
    • /
    • pp.2-12
    • /
    • 2002
  • The small-angle X-ray scattering (SAXS) beamline BL4C1 at the 2.5 GeV storage ring of the Pohang Accelerator Laboratory (PAL) has been in its first you of operation since August 2000. During this first stage it could meet the basic requirements of the rapidly growing domestic SAXS user community, which has been carrying out measurements mainly on various polymer systems. The X-ray source is a bending magnet which produces white radiation with a critical energy of 5.5 keV. A synthetic double multilayer monochromator selects quasi-monochromatic radiation with a bandwidth of ca. 1.5%. This relatively low degree of monochromatization is sufficient for most SAXS measurements and allows a considerably higher flux at the sample as compared to monochromators using single crystals. Higher harmonics from the monochromator are rejected by reflection from a flat mirror, and a slit system is installed for collimation. A charge-coupled device (CCD) system, two one-dimensional photodiode arrays (PDA) and imaging plates (IP) are available its detectors. The overall performance of the beamline optics and of the detector systems has been checked using various standard samples. While the CCD and PDA detectors are well-suited for diffraction measurements, they give unsatisfactory data from weakly scattering samples, due to their high intrinsic noise. By using the IP system smooth scattering curves could be obtained in a wide dynamic range. In the second stage, stating from August 2001, the beamline will be upgraded with additional slits, focusing optics and gas-filled proportional detectors.