• Title/Summary/Keyword: Reflection/Transmission Coefficients

Search Result 117, Processing Time 0.015 seconds

Experimental Analysis of Power Transmission and Reflection In a Coupled Plate (연성평판에서의 파워투과 및 반사 특성 실험 해석)

  • Lee, Y.H.;Kil, H.G.;Lee, H.H.;Lee, K.H.;Hong, S.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.170-173
    • /
    • 2005
  • The objective of this paper is to perform measurements of power transmission and reflection coefficients in a coupled plate. The coupled plate has been divided into 2 subsystems. The out-of-plane vibration has been only considered with assumption of relatively small in-plane vibration. The coupling loss factors have been measured with consideration of the power balance condition. The power transmission and reflection coefficients has been estimated from the measured values of the coupling loss factors. The measured power transmission and reflection coefficients have been compared with the corresponding theoretical coefficients in a semi-infinite coupled plate.

  • PDF

Reflection and Transmission of Submerged Breakwater due to Wave Groups (파군특성에 따른 잠제의 반사와 투과)

  • 이철응
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.1
    • /
    • pp.61-72
    • /
    • 2001
  • The effects of wave groups on reflection and transmission over a submerged breakwater are studied by using a hydrodynamic numerical model and five independent wave grouping parameters. Based on qualitative analyses of limited data, it is found that the reflection and transmission coefficients of submerged breakwater may be strongly correlated with the incident wave groups. The reflection and transmission coefficients tend to decrease as wave groups become relatively larger. In particular, the reflection and transmission coefficients due to wave groups are evaluated smaller than those of single incident waves. However, the reflection and transmission coefficients are not affected by the interval of higher wave groups. It is finally concluded that the mean of nul-length among wave grouping parameters can be an useful parameter for correlating the wave groups with the reflection and transmission coefficients of submerged breakwater.

  • PDF

Reflection and Transmission Coefficients for Rubble Mound Breakwaters in Busan Yacht Harbor

  • Park, O Young;Dodaran, Asgar Ahadpour;Bagheri, Pouyan;Kang, Kyung Uk;Park, Sang Kil
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.90-94
    • /
    • 2013
  • This paper reports the results obtained for there flection and transmission coefficients on rubble mound breakwaters in Busan Yacht Harbor. A2D physical model test was conducted in the wave flume at the Coastal Engineering Research Laboratory at Pusan National University, Busan, South Korea. In this study, physical model tests were completed to further our understanding of the hydrodynamic processes that surround a rubble mound structure subjected to irregular waves. In particular, the reflection and transmission coefficients, as well as the spectrum transformation, were analyzed. This analysis suggests that with an increase in wave height around a rubble mound, the reflection coefficient drastically increases at each water level (HHW or MSL or LLW). Moreover, when the water level changes from HHW to LLW, the reflection coefficient is suddenly reduced. A further result of the analysis is that the transmission coefficient strongly drops away from the rear of the structure. Finally, in regard to the rubble mound breakwater in Busan Yacht Harbor, a consideration of the reflection and transmission coefficients plays an important role in the design.

Power Reflection and Transmission Coefficients for Meander-Line Polarizers with a Chiral Slab

  • Delihacioglu, Kemal;Uckun, Savas
    • ETRI Journal
    • /
    • v.25 no.1
    • /
    • pp.41-48
    • /
    • 2003
  • This paper presents a theoretical investigation of power reflection and transmission coefficients for a meander-line polarizer placed periodically on a chiral slab. It is assumed that a linearly polarized transverse magnetic wave is incident on a chiral slab from the air region. In the analysis, we derive the electric and magnetic fields in the modal form in the air and chiral regions. We obtain power reflection and transmission coefficients in a straightforward manner after matching the tangential components of the electric and magnetic fields at the boundaries. We present numerical results for the power reflection and transmission coefficients versus frequency and incident angle for different values of the chirality admittance. A meander-line polarizer placed on a dielectric slab can convert a linearly polarized wave to a circularly polarized wave. The design parameters for a meander-line polarizer are the dimensions of the meander-line and the values of the dielectric slab. Replacing a dielectric slab with a chiral slab introduces a new independent parameter which controls the wave polarization.

  • PDF

Numerical study on the performance of semicircular and rectangular submerged breakwaters

  • Barzegar, Mohammad;Palaniappan, D.
    • Ocean Systems Engineering
    • /
    • v.10 no.2
    • /
    • pp.201-226
    • /
    • 2020
  • A systematic numerical comparative study of the performance of semicircular and rectangular submerged breakwaters interacting with solitary waves is the basis of this paper. To accomplish this task, Nwogu's extended Boussinesq model equations are employed to simulate the interaction of the wave with breakwaters. The finite difference technique has been used to discretize the spatial terms while a fourth-order predictor-corrector method is employed for time discretization in our numerical model. The proposed computational scheme uses a staggered-grid system where the first-order spatial derivatives have been discretized with fourth-order accuracy. For validation purposes, five test cases are considered and numerical results have been successfully compared with the existing analytical and experimental results. The performances of the rectangular and semicircular breakwaters have been examined in terms of the wave reflection, transmission, and dissipation coefficients (RTD coefficients) denoted by KR, KT, KD. The latter coefficient KD emerges due to the non-energy conserving KR and KT. Our computational results and graphical illustrations show that the rectangular breakwater has higher reflection coefficients than semicircular breakwater for a fixed crest height, but as the wave height increases, the two reflection coefficients approach each other. un the other hand, the rectangular breakwater has larger dissipation coefficients compared to that of the semicircular breakwater and the difference between them increases as the height of the crest increases. However, the transmission coefficient for the semicircular breakwater is greater than that of the rectangular breakwater and the difference in their transmission coefficients increases with the crest height. Quantitatively, for rectangular breakwaters the reflection coefficients KR are 5-15% higher while the diffusion coefficients KD are 3-23% higher than that for the semicircular breakwaters, respectively. The transmission coefficients KT for rectangular breakwater shows the better performance up to 2.47% than that for the semicircular breakwaters. Based on our computational results, one may conclude that the rectangular breakwater has a better overall performance than the semicircular breakwater. Although the model equations are non-dissipative, the non-energy conserving transmission and reflection coefficients due to wave-breakwater interactions lead to dissipation type contribution.

Reflection and Transmission of Regular Waves by Multiple-Row Curtainwall-Pile Breakwaters (다열 커튼월-파일 방파제에 의한 규칙파의 반사 및 투과)

  • Suh, Kyung-Duck;Ji, Chang-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.2
    • /
    • pp.97-111
    • /
    • 2006
  • Using the eigenfunction expansion method, a mathematical model has been developed to calculate the reflection and transmission of regular waves from a multiple-row curtainwall-pile breakwater. In addition, hydraulic model experiments have been conducted with different values of porosities between the piles, drafts of the curtain walls, and distances between the rows of the breakwater. It is found that the reflection and transmission coefficients decrease and increase, respectively, with decreasing relative water depth, but they bounce to increase and decrease, respectively, as the relative water depth decreases further. When either the porosity between the piles or the draft of the curtain wall is changed with other parameters fixed, the relative magnitudes of the reflection and transmission coefficients have been changed, but the general trend remained the same. When the wavelength is the same as the distance between the rows of the breakwater, a rapid change was observed for the reflection and transmission coefficients. A good agreement between the measurement and prediction was also founded for three-row breakwaters.

Estimation of Hysteretic Interfacial Stiffness of Contact Surfaces

  • Kim, Nohyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.3
    • /
    • pp.276-282
    • /
    • 2013
  • This paper proposes an ultrasonic method for measurement of linear and hysteretic interfacial stiffness of contacting surfaces between two steel plates subjected to nominal compression pressure. Interfacial stiffness was evaluated by the reflection and transmission coefficients obtained from three consecutive reflection waves from solid-solid surface using the shear wave. A nonlinear hysteretic spring model was proposed and used to define the quantitative interfacial stiffness of interface with the reflection and transmission coefficients. Acoustic model for 1-D wave propagation across interfaces is developed to formulate the reflection and transmission waves and to determine the linear and nonlinear hysteretic interfacial stiffness. Two identical plates are put together to form a contacting surface and pressed by bolt-fastening to measure interfacial stiffness at different states of contact pressure. It is found from experiment that the linear and hysteretic interfacial stiffness are successfully determined by the reflection and transmission coefficient at the contact surfaces through ultrasonic pulse-echo measurement.

Reflection and Transmission of Acoustic Waves Across Contact Interfaces

  • Kim, Noh-Yu;Jhang, Kyung-Young;Lee, Tae-Hoon;Yang, Seung-Yong;Chang, Young-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.3
    • /
    • pp.292-301
    • /
    • 2008
  • A linearized model for hysteretic acoustic nonlinearity of imperfectly joined interface is proposed and analyzed by using Coulomb damping to investigate the characteristics of the reflection and transmission coefficients for harmonic waves at the contact interface. Closed crack is modeled as non welded interface that has nonlinear discontinuity condition in displacement across its boundary. Based on the hysteretic contact stiffness of the contact interface, the reflected and transmitted waves are determined by deriving the tractions on both sides of the interface in terms of the discontinuous displacements across the interface. It is found that the amplitudes of the reflected and transmitted waves are dependent on the frequency and the hysteretic stiffness. As the frequency of the incident wave increases, the higher reflection and lower transmission are obtained. It also shows that the hysteresis of the interface increases the reflection coefficient, but reduces the transmission coefficient. A fatigue crack is also made in aluminum specimen to demonstrate these characteristics of the reflection and transmission of contact interfaces.

Investigation of the U-shape submerged breakwater performance by the finite-different scheme

  • Barzegar, Mohammad
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.83-97
    • /
    • 2021
  • The submerged U-shape breakwater interaction with the solitary wave is simulated by the Boussinesq equations using the finite-difference scheme. The wave reflection, transmission, and dissipation (RTD) coefficients are used to investigate the U-shape breakwater's performance for different crest width, Lc1, and indent breakwater height, du. The results show that the submerged breakwater performance for a set of U-shape breakwater with the same cross-section area is related to the length of submerged breakwater crest, Lc1, and the distance between the crests, Lc2 (or the height of du). The breakwater has the maximum performance when the crest length is larger, and at the same time, the distance between them increases. Changing the Lc1 and du of the U-shape breakwaters result in a significant change in the RTD coefficients. Comparison of the U-shape breakwater, having the best performance, with the averaged RTD values shows that the transmission coefficients, Kt, has a better performance of up to 4% in comparison to other breakwaters. Also, the reflection coefficients KR and the diffusion coefficients, Kd shows a better performance of about 30% and 55% on average, respectively. However, the model governing equations are non-dissipative. The non-energy conserving of the transmission and reflection coefficients due to wave and breakwater interaction results in dissipation type contribution. The U-shape breakwater with the best performance is compared with the rectangular breakwater with the same cross-section area to investigate the economic advantages of the U-shape breakwater. The transmission coefficients, Kt, of the U-shape breakwater shows a better performance of 5% higher than the rectangular one. The reflection coefficient, KR, is 60% lower for U-shape in comparison to rectangular one; however, the diffusion coefficients, Kd, of U-shape breakwater is 35% higher than the rectangular breakwater. Therefore, we could say that the U-shape breakwater has a better performance than the rectangular one.

Efficiency of wave absorption by the porous of "Taewoo" of Jeju in regular seaway (파랑 중 제주 "테우" 틈에 의한 파 흡수효과)

  • Lee, Chang-Heon;Choi, Chan-Moon;Ahn, Jang-Young;Cho, Il-Hyoung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.2
    • /
    • pp.144-152
    • /
    • 2013
  • In an effort to find the optimum porous of Taewoo through the mathematical model 2 - dimensional tank water experiment among the approached to a problem related to ocean engineering, this study analyzed the porosity by dividing it into 9 cases. As the wave penetrates through the longitudinal porous of the Taewoo model, it was found that there is a wave energy loss because of the phenomenon of the separation of the porous due to the eddy. Looking into the general tendency based on the wave-height meter (probe) data, it was found that the shorter wavelength and higher frequency area, the more reflection coefficients increased, but in contrast, the longer wavelength and lower frequency area, the transmission coefficients showed the increasing trend and energy dissipation was in a similar way with reflection coefficients. In addition, it was found that the bigger the porosity was, the narrower distribution range of reflection coefficients was, and the more its average value decreased. On the other hand the transmission coefficients in direct opposition to reflection was found to show the wider range and the more gradual increase in the average value as porosity was the bigger around the average value. In contrast, energy dissipation rate was found to increase linearly as porosity increased the more around the porosity of 0.2518 but it decreased gradually around the peak point. Through the above results, it is judged that the porous of optimum in the longitudinal direction of the Taewoo model perforated plate was about 2.6cm because it was found that the porosity which produced the lowest reflection and transmission coefficient and the highest energy dissipation. As a result of comparing this to the case where there was no porosity at all, it showed the function of wave absorbing about 31.60%.