• Title/Summary/Keyword: Reflected Light Measurement

Search Result 99, Processing Time 0.02 seconds

Development of An Optical Surface Roughness Sensor for On-the-Machine Measurement (기상 측정을 위한 광학적 표면 거칠기 측정 센서 개발)

  • Kim, Hyun-Soo;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.168-178
    • /
    • 1994
  • This paper presents an optical surface roughness sensor developed for intermediate- process measurement on the machine. The light scattering method is adopted for the sensor, which is designed conpact and flexible enough to apply to 'on the machine' measurement of surface roughness. The developed sensor has special features such that it makes use, as the measurement parameter, of the ratio between fluxes of the incident light, and the specularly and partly diffusely reflected light, and that it can adjust the incident light angle. The experimental investigation reveals not only the sensor has good performance as a surface roughness sensor but the sensor is very robust so as to be useful in in-process measurement.

  • PDF

A Study on Roughness Measurement of Polished Surfaces Using Reflected Laser Beam Image (레이저빔 반사 화상을 이용한 연마면 거칠기 측정법에 관한 연구)

  • Shen, Yun-Feng;Lim, Han-Seok;Kim, Hwa-Young;Ahn , Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.145-152
    • /
    • 1999
  • This paper presents the principle and experimental results of a non-contact surface roughness measurement by means of screen projected pattern of lase beam reflected from a polished surface. In the reflected laser beam pattern especially from a fine surface like ground or polished one, light intensity varies from the center fo the image to its boundary as the Gaussian distribution. The standard deviation of a light intensity distribution is assumed to be a good non-contact estimator for measuring the surface roughnes, because the light reflectivity is known to be well related with the surface roughness. This method doesn't need to discriminate between the specularly reflected light and the diffusely reflected one, whereas the scattered laser intensity method must do. Nor it needs to adjust the change of light intensity caused by environmental lights or specimen materials. Reflected laser beam pattern narrowly spreads out in the vertical direction to tiny scratches on the polished surface due to abrasives. The deeper the scratch the more the dispersion, which means the rougher surface. The standard deviation of the pattern is nearly in proportion to the surface roughness. Measurement errors by this method are shown to be below 10 percent compared with those obtained by a common contact method. The inclination of measuring unit from the normal axis causes the measurement errors up to 10 percent for an angle of 4 degree. Therefore the proposed method can be used as an on-the-machine quick roughness estimator within 10 percent measurement error.

  • PDF

Adjustment Algorithm of Incident Light Power for Improving Performance of Laser Surface Roughness Measurement (레이저 표면 거칠기 측정 성능 향상을 위한 입사 광강도 조정 알고리즘)

  • 서영호;김화영;안중환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.79-87
    • /
    • 2004
  • The light pattern reflected from a machined surface contains some information like roughness and profile on the projected surface as expected in the Beckmann-Spizzichino model. In applying the theory into a real reliable measuring device, many parameters such as incident light power, wave length, spot size should be kept a constant optical value. However, the reflected light power is likely to change with the environmental noise, the variations of the light source, the reflectivity of the surface, etc. even though the incident light power is constant. In this study, a method for adjusting the incident light power to keep the reflected light power projected on a CMOS image sensor constant was proposed and a simple adjustment algorithm based on PI digital control was examined. Experiments verified that the proposed method made the surface roughness measurement better and more reliable even under variations of the height of light source.

Development of microscopic surface profile estimation algorithm through reflected laser beam analysis (레이저 반사광 분석을 통한 미세 표면 프로파일 추정 알고리즘의 개발)

  • Seo Young-Ho;Ahn Jung-Hwan;Kim Hwa-Young;Kim Sun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.64-71
    • /
    • 2005
  • In order to measure surface roughness profile, stylus type equipments are commonly used, but the stylus keeps contact with surface and damages specimens by its tip pressure. Therefore, optics based measurement systems are developed, and light phase interferometer, which is based on light interference phenomenon, is the most noticeable research. However, light interference based measurements require translation mechanisms of nano-meter order in order to generate phase differences or multiple focusing, thus the systems cannot satisfy the industrial need of on-the-machine and in-process measurement to achieve factory automation and productive enhancement. In this research, we focused light reflectance phenomenon rather than the light interference, because reflectance based method do not need translation mechanisms. However, the method cannot direct]y measure surface roughness profile, because reflected light consists of several components and thus it cannot supply surface height information with its original form. In order to overcome the demerit, we newly proposed an image processing based algorithm, which can separate reflected light components and conduct parameterization and reconstruction process with respect to surface height information, and then confirmed the reliability of proposed algorithm by experiment.

Development of a Surface Roughness Measurement Method Using Reflected Laser Beam Image and Its Application (레이저광 반사 화상을 이용한 표면 거칠기 측정법의 개발과 적용)

  • Yun, Yun-Feng-Shen;Kim, haa-young;An, jung-hwan;Chi, ei-jon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.51-57
    • /
    • 2001
  • A light beam reflected from a machined surface generally containes information concerning about its surface roughness. This study examines and proposes a surface roughness measurement technique for on-machine measurement of machined surfaces. The technique is based on the measurement of a reflected laser beam pattern and the statistical analysis of its light intensity distribution. The surface roughness was found to be closely related to the standard deviation of the light intensity on the primary axis of the reflected pattern. An image acquisition device is made up of a laser diode, a half mirror, a screen, and a CCD camera. The exact image with the primary and secondary axes of a reflected laser beam pattern is calculated through such image processing algorithm as thresholding, edge detection, image rotation, segmentation, etc. A median filter and a surrounding light correction algorithm are improve the image quality and reduce the measuring error. Using the developed measuring device the effect of screen materials and workpiece and workpiece materials was investigated. Experimental results regarding to relatively high-quality surfaces machined by grinding, polishing, lapping processes have shown the measurement error is within 10% in the range of $0.1{mu}m~0.8{\mu}m R_q.$Therefore, the proposed method is thought to be effectively used when quick measurements is needed with workpieces fixed on the machine.

  • PDF

A Robust Algorithm for Roughness Laser Measurement based on Light Power Regulation against Specimen Changes

  • Seo Young Ho;Ahn Jung Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1131-1137
    • /
    • 2005
  • Methods for measuring surface roughness based on light reflectivity have advantages over methods based on light interference or diffraction, especially in in-situ, on-the-machine and in-process applications. However, measurement inconsistencies caused by changes in the specimen are still a drawback for field applications. In this study, we propose a new feedback-based algorithm to enhance the consistency against changes in the specimen. The algorithm is deduced from simulations based on light reflectance theory with typical modeled surfaces. The proposed method is similar to a digital controller and regulates the power of reflected light. Experiments varying heights and materials, verified the improvements in robustness of the method against measurement disturbances caused by specimen changes.

The Measurement Method of Reflected Intensity of Radiation for High Precision Laser Range Finder (고정밀 레이저 변위기용 반사 광량 측정 기법)

  • Bae, Young-Chul;Cho, Eui-Joo;Lee, Hyen-Jae;Kim, Sung-Hyen;Kim, Hyeon-Woo
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.1
    • /
    • pp.34-40
    • /
    • 2009
  • The phase delay of output signal of APD(avalanche photo diode) caused by intensity of reflected light which comes from target. These difference of phase delay is an one of the main reason of measurement error, but there is no reasonable measurement meter and method to detect it. In this paper, to solve the problem, we propose and implement a method to measure the intensity of radiation. The method measures DC voltage which is proportional to the reflected intensity of radiation and come out from APD in receiver by realtime.

  • PDF

A Method for Measurement of Roughness of Ground Surfaces by Using Fluxes of Scattered Lights (산란광속측정에 의한 연삭가공 표면 거칠기 측정방법)

  • Hong, Seong-Wook;Kim, Hyun-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.46-54
    • /
    • 1995
  • This paper presents a simple method for measurenemt of roughness of ground surfaces. The present method utilizes fluxes of scattered lights condensed through lenses aligned along the specular direction. A theoretical analysis is preformed for the purpose of investigating the possibility of the method as well as determining the experimental condition. Experiments are also performed to show the effectiveness and robustness of the proposed method. The theoretical and experimental results show that the proposed method is simple enouth to implement and has a potential to identify a wide range of roughness of ground surfaces.

  • PDF

Study on a Forward Light Changes According to the Surface Treatment of Light Cutoff Panel (차광판 표면 처리 방법에 따른 전사광 변화에 관한 연구)

  • Gu, Jinhoi;Kwon, Myunghee;Lee, Yoon-Gyeong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.1-5
    • /
    • 2014
  • Since the "Light Pollution Prevention Act" was executed, the installation of the light cutoff panel to the security lightings which caused light trespass has been increased in the local government. The light cutoff panel is effective in reducing the light trespass in term of the cost-benefit. Because the installation of the light cutoff panel is inexpensive than the change of the security lighting. But the reflected light from the surface of the light cutoff panel has been regarded as another light pollution problem to solve. Therefore, we try to improve light cutoff panel by changing the light reflectivity characteristic of the surface of the light cutoff panel. First, we laminated the surface of light cutoff panel by black powder to reduce the light reflectivity of the light cutoff panel. After the black powder lamination, the light reflectivity on the light cutoff panel improved from 85% to 5%. And we compared reflected light caused by black powder laminated light cutoff panel with the one of no surface treatment cutoff panel. The vertical illuminance was measured at 3, 6, 9m in front of the security lighting and 3, 6, 9, 12, 15, 18m in back of the security lighting to evaluate the reflected light. And the measurement height was determined of 1.5m considering the height of the 1th floor of an apartment house. In this study, we found that the reflected light from the light cutoff panel can be reduced about 90% by the black powder lamination method. The results derived from this study will be helpful to develope the various kind of light cutoff panel which minimize the adverse effect like reflected light of light cutoff panel.

Development and performance test of a complex laser interferometer for simultaneously measuring displacement and 2-D angles (변위 각도 동시 측정용 복합 레이저 간섭계의 제작과 특성 분석)

  • Kim J.W.;Kim J.A.;Kang C.S.;Eom T.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.573-576
    • /
    • 2005
  • A compact linear and angular displacement measurement device was developed by combining a Michelson interferometer and an autocollimator to characterize the movement of a precision stage. A Michelson interferometer and an autocollimator are typical devices for measuring linear and angular displacement, respectively. By controlling the polarization of reflected beam from the target mirror of the interferometer, some part of light was retro-reflected to the light source and the reflected beam was used for angle measurement. The interferometer and the autocollimator use the same optic axis and the target mirror can be easily and precisely aligned orthogonal to the optic axis by monitoring the autocollimator s signal. The autocollimator was designed for angular resolution of 0.1 arcsec and dynamic range of 60 arcsec. The nonlinearity error of interferometer was minimized by trimming the gain and offset of the photodiode signals. Through the experiments, we evaluate the performance of measurement device and discuss its applications.

  • PDF