• Title/Summary/Keyword: Reflectance performance

Search Result 193, Processing Time 0.025 seconds

Influence of silver nanoparticles on the photovoltaic parameters of silicon solar cells

  • Dzhafarov, Tayyar D.;Pashaev, Arif M.;Tagiev, Bahadur G.;Aslanov, Shakir S.;Ragimov, Shirin H.;Aliev, Akper A.
    • Advances in nano research
    • /
    • v.3 no.3
    • /
    • pp.133-141
    • /
    • 2015
  • Influence of Ag nanoparticles on optical and photovoltaic properties of, silicon substrates, silicon solar cells and glass have been investigated. Silver nanoparticles have been fabricated by evaporation of thin Ag layers followed by the thermal annealing. The surface plasmon resonance peak was observed in the absorbance spectrum at 470 nm of glass with deposited silver nanoparticles. It is demonstrated that deposition of silver nanoparticles on silicon substrates was accompanied with a significant decrease in reflectance at the wavelength 360-1100 nm and increase of the absorption at wavelengths close to the band gap for Si substrates. We studied influence of Ag nanoparticles on photovoltaic characteristics of silicon solar cells without and with common use antireflection coating (ARC). It is shown that silver nanoparticles deposited onto the front surface of the solar cells without ARC led to increase in the photocurrent density by 39% comparing to cells without Ag nanoparticles. Contrary to this, solar cells with Ag nanoparticles deposited on front surface with ARC discovered decrease in photocurrent density. The improved performance of investigated cells was attributed to Ag-plasmonic excitations that reduce the reflectance from the silicon surface and ultimately leads to the enhanced light absorption in the cell. This study showed possibility of application of Ag nanoparticles for the improvement of the conversion efficiency of waferbased silicon solar cells instead of usual ARC.

Prediction of Soluble Solids Content of Chestnut using VIS/NIR Spectroscopy

  • Park, Soo Hyun;Lim, Ki Taek;Lee, Hoyoung;Lee, Soo Hee;Noh, Sang Ha
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.185-191
    • /
    • 2013
  • Purpose: The present study focused on the estimation of soluble solids content (SSC) of chestnut using reflectance and transmittance spectra in range of VIS/NIR. Methods: Four species intact/peeled chestnuts were used for acquisition of spectral data. Transmittance and reflectance spectra were used to develop the best PLS model to estimate SSC of chestnut. Results: The model developed with the transmitted energy spectra of peeled chestnuts rather than intact chestnuts and with range of NIR rather than VIS performed better. The best $R^2$ and RMSEP of cross validation were represented as 0.54 and $1.85^{\circ}Brix$. The results presented that the reflectance spectra of peeled chestnuts by species showed the best performance to predict SSC of chestnut. $R^2$ and RMSEP were 0.55 and $1.67^{\circ}Brix$. Conclusions: All developed models showed RMSEP around $1.44{\sim}2.54^{\circ}Brix$, which is considered not enough to estimate SSC accurately. It was noted that $R^2$ of cross validation that we found were not high. For all that, grading of the fruits in two or three classes of SSC during postharvest handling seems possible with an inexpensive spectrophotometer. Furthermore, the development of estimation of SSC by each chestnut species could be considered in that SSC distribution is clustering in different range by species.

Nondestructive Classification of Viable and Non-viable Radish (Raphanus sativus L) Seeds using Hyperspectral Reflectance Imaging (초분광 반사광 영상을 이용한 무(Raphanus sativus L) 종자의 발아와 불발아 비파괴 판별)

  • Ahn, Chi Kook;Mo, Chang Yeun;Kang, Jum-Soon;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.411-419
    • /
    • 2012
  • Purpose: Nondestructive evaluation of seed viability is a highly demanded technique in the seed industry. In this study, hyperspectral imaging system was used for discrimination of viable and non-viable radish seeds. Method: The spectral data with the range from 400 to 1000 nm measured by hyperspectral reflectance imaging system were used. A calibration and a test models were developed by partial least square discrimination analysis (PLS-DA) for classification of viable and non-viable radish seeds. Either each data set of visible (400~750 nm) and NIR (750~1000 nm) spectra and the spectra of the combined spectral ranges were used for developing models. Results: The discrimination accuracy of calibration was 84% for visible range and 76.3% for NIR range. The discrimination accuracy of test was 84.2% for visible range and 75.8% for NIR range. The discrimination accuracies of calibration and test with full range were 92.2% and 92.5%, respectively. The resultant images based on the optimal PLS-DA model showed high performance for the discrimination of the nonviable seeds from the viable seeds with the accuracy of 95%. Conclusions: The results showed that hyperspectral reflectance imaging has good potential for discriminating nonviable radish seeds from massive amounts of viable seeds.

Development of IR Reflective Cool Pigment and Paint (차열도료용 Cool Pigment 및 Paint 개발)

  • Kwon, Myon-Joo;Do, Young-Woong;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3800-3805
    • /
    • 2012
  • Infrared(IR) reflective black cool pigment and paint which is used for interior/exterior materials(IR reflectance >30%) to prevent heat island effect and to increase energy efficiency were studied. Cool pigment was synthesized using mixture of $Fe_2O_3$ and $Cr_2O_3$ with calcination from 900 to $1,200^{\circ}C$. Cool paint was prepared by formulation of cool pigment, acrylic resins, and other additives. Results showed that optimum color fixation of pigment obtained by mole ratio of Fe to Cr was 0.9 with calcination temperature at $1,000^{\circ}C$. The cool paint formulated by 20% pigment and 1.5% dispersive additive with $125{\mu}m$ thickness of coated layer showed optimum IR reflectance. Temperature difference on surface between cool paint and ordinary paint(STD) was $36.5^{\circ}C$ and IR reflectance(TSR) was 39.3% at wavelength from 700 to 2,500nm. And color change was not detected during 500hrs weathering test.

Development of Suspended Particulate Matter Algorithms for Ocean Color Remote Sensing

  • Ahn, Yu-Hwan;Moon, Jeong-Eun;Gallegos, Sonia
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.4
    • /
    • pp.285-295
    • /
    • 2001
  • We developed a CASE-II water model that will enable the simulation of remote sensing reflectance($R_{rs}$) at the coastal waters for the retrieval of suspended sediments (SS) concentrations from satellite imagery. The model has six components which are: water, chlorophyll, dissolved organic matter (DOM), non-chlorophyllous particles (NC), heterotrophic microorganisms and an unknown component, possibly represented by bubbles or other particulates unrelated to the five first components. We measured $R_{rs}$, concentration of SS and chlorophyll, and absorption of DOM during our field campaigns in Korea. In addition, we generated $R_{rs}$ from different concentrations of SS and chlorophyll, and various absorptions of DOM by random number functions to create a large database to test the model. We assimilated both the computer generated parameters as well as the in-situ measurements in order to reconstruct the reflectance spectra. We validated the model by comparing model-reconstructed spectra with observed spectra. The estimated $R_{rs}$ spectra were used to (1) evaluate the performance of four wavelengths and wavelengths ratios for accurate retrieval of SS. 2) identify the optimum band for SS retrieval, and 3) assess the influence of the SS on the chlorophyll algorithm. The results indicate that single bands at longer wavelengths in visible better results than commonly used channel ratios. The wavelength of 625nm is suggested as a new and optimal wavelength for SS retrieval. Because this wavelength is not available from SeaWiFS, 555nm is offered as an alternative. The presence of SS in coastal areas can lead to overestimation chlorophyll concentrations greater than 20-500%.

Uncertainty analysis of BRDF Modeling Using 6S Simulations and Monte-Carlo Method

  • Lee, Kyeong-Sang;Seo, Minji;Choi, Sungwon;Jin, Donghyun;Jung, Daeseong;Sim, Suyoung;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.161-167
    • /
    • 2021
  • This paper presents the method to quantitatively evaluate the uncertainty of the semi-empirical Bidirectional Reflectance Distribution Function (BRDF) model for Himawari-8/AHI. The uncertainty of BRDF modeling was affected by various issues such as assumption of model and number of observations, thus, it is difficult that evaluating the performance of BRDF modeling using simple uncertainty equations. Therefore, in this paper, Monte-Carlo method, which is most dependable method to analyze dynamic complex systems through iterative simulation, was used. The 1,000 input datasets for analyzing the uncertainty of BRDF modeling were generated using the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) Radiative Transfer Model (RTM) simulation with MODerate Resolution Imaging Spectroradiometer (MODIS) BRDF product. Then, we randomly selected data according to the number of observations from 4 to 35 in the input dataset and performed BRDF modeling using them. Finally, the uncertainty was calculated by comparing reproduced surface reflectance through the BRDF model and simulated surface reflectance using 6S RTM and expressed as bias and root-mean-square-error (RMSE). The bias was negative for all observations and channels, but was very small within 0.01. RMSE showed a tendency to decrease as the number of observations increased, and showed a stable value within 0.05 in all channels. In addition, our results show that when the viewing zenith angle is 40° or more, the RMSE tends to increase slightly. This information can be utilized in the uncertainty analysis of subsequently retrieved geophysical variables.

Development of Measuring Technique for Somatic Cell Count in Raw Milk by Spectroscopy (분광분석법을 이용한 우유의 체세포수 측정기술 개발)

  • Choi, C.H.;Kim, Y.J.;Kim, K.S.;Choi, T.H.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.3
    • /
    • pp.210-215
    • /
    • 2008
  • The objective of this study was to develop models to predict SCC (somatic cell count) in unhomogenized milk by visible and near-infrared (NIR) spectroscopic technique. Total of 100 milk samples were collected from dairy farms and preserved to minimize propagation of bacteria cells during transportation. Reductive reagents such as methyl red, methylene blue, bromcresol purple, phenol red and resazurin were added to milk samples, and then colors of milk were changed based on SCC of milk. For optimal reductive reagents, reaction time was controlled at 3 level of reaction time. A spectrophotometer was used to measure reflectance spectra from milk samples. The partial least square (PLS) models were developed to predict SCC of unhomogenized milk. The PLS results showed that milk samples with reductive reagents had a good correlation between predicted and measured SCC at 5 minutes of reaction time in the visible range. The PLS models with resazurin reagent had the best performance in $400{\sim}600\;nm$. The prediction results of milk samples with resazurin had 0.86 of correlation coefficient and 14,184 cell/mL of SEP.

$MgF_2$ AR Coating 두께에 따른 CIGS Cell Performance 변화

  • Kim, Ju-Hui;Lee, Gyu-Seok;Jo, Dae-Hyeong;Choe, Hae-Won;Kim, Je-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.373-373
    • /
    • 2011
  • $Cu(In,Ga)Se_2$(CIGS) 박막 태양전지는 Chalcopyrite계 박막 태양전지로 Cu, In, Ga, Se 각 원소의 조성을 적절히 조절하여 박막을 성장시킨다. 성장시킨 CIGS 박막은 광흡수계수가 105cm-1로 다른 물질 보다 뛰어나고 직접 천이형 반도체로서 얇은 두께로도 고효율의 박막 제작이 가능하다. 얇은 두께로도 충분히 빛의 흡수가 가능하지만, cell 표면 반사에 의한 광 손실은 cell 효율을 떨어뜨리게 된다. 본 연구에서는 CIGS 박막 태양전지의 광 흡수 향상을 위해 굴절률이 1.86인 ITO 위에 ITO보다 굴절률이 작은 $MgF_2$ (n=1.377) [1]를 80, 100, 120, 140 nm로 증착하여 $MgF_2$/Al/Ni/ITO/i-ZnO/CdS/CIGS/Mo/SLG 시료를 제작하고, optical reflectance, Quantum Efficiency를 이용하여 분석하였다. optical reflectance 분석 결과, $MgF_2$ AR coating을 한 경우, 두께가 두꺼워짐에 따라 광 반사도가 감소하는 경향을 보였다. 또한 AR coating 두께가 커짐에 따라 fluctuation이 점점 커지며, 파형이 장파장 쪽으로 shift하는 것을 관찰 할 수 있었다. Quantum efficiency (QE)를 분석한 결과 $MgF_2$ AR coating 할 경우, 측정된 대부분의 파장에서 QE가 향상되는 것을 확인할 수 있었다. 하지만 AR coating 두께에 따른 변화는 뚜렷한 차이를 보이지 않았다. AR coating 결과, JSC가 증가하여 efficiency가 향상되는 것을 확인 할 수 있다. 그러나 $MgF_2$ AR coating 80~140 nm 범위에서 cell 효율 변화의 뚜렷한 차이는 관찰할 수 없었다.

  • PDF

Influence to give to a performance evaluation and sunlight reflection properties of the building crustal material (건물외피 재료의 성능평가와 일사반사 특성에 미치는 영향)

  • Sang, Hie-Sun;Kwak, Sung-Gun;Lee, Jeung-Seok;Yoshida, Atsumada
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.177-186
    • /
    • 2011
  • We can expect reduction of the sunlight absorption quantity to a structure and an earth surface, a decline of the surface temperature and a decline of the heat transport volume in what there is a method I give the sunlight reflectance in the aspect to the surface of the building by painting sunlight high reflectance paint, and to reduce the sunlight absorption quantity to a structure and an earth surface and does so, and, in addition, a method high water retentivity of tree planting and the road surface of the city space uses evaporation latent heat of the water by making it, and to restrain a rise in temperature is thought about. and It is thought that I reduce the sunlight absorption quantity to not only the structure but also other structures and attention gathers to the reflexive reflector reflecting in the direction again and it is wide as a marker of a board and the clothing of the traffic sign and is used the incidence energy from a source of light for this reflexive reflector now by there is it and devises surface structure again, and controlling reflection directivity for the sunlight for the purpose of raising night visibility.

  • PDF

Development of Aerosol Retrieval Algorithm Over Ocean Using FY-1C/1D Data

  • Xiuqing, Hu;Naimeng, Lu;Hong, Qiu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1255-1257
    • /
    • 2003
  • This study proposes a single-channel satellite remote sensing algorithm for retrieving aerosol optical thickness over global ocean using FY-1C/1D data. An efficient lookup table (LUT)method is adopted in this algorithm to generate apparent reflectance in channel 1 and channel 2 of FY-1C/1D over ocean. The algorithm scale the apparent reflectance in cloud-free conditions to aerosol optical thickness using a state-of-art radiative transfer model 6S with input of the relative spectral response of channel 1 and 2 of FY-1C/1D. Monthly mean composite maps of the aerosol optical thickness have been obtained from FY-1C/1D global area coverage data between 2001 and 2003. Aerosol optical thickness maps can show the major aerosol source which are located off the west coast of northern and southern Africa, Arabian Sea and India Ocean. These result is very similar to other satellite sensors such as AVHRR and MODIS in the location area of heavy aerosol optical thickness over global ocean. The algorithm have been used to FY-1D operational performance and it is the first operational aerosol remote sensing product in China.

  • PDF