• Title/Summary/Keyword: Refining Industry

Search Result 161, Processing Time 0.022 seconds

Effects of Refining Condition on the Specific Energy Consumption and Physical Properties of Liner (펄프의 고해 조건이 비에너지 소비와 라이너의 물성에 미치는 영향)

  • 원종명
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.2
    • /
    • pp.17-23
    • /
    • 2004
  • The effects of refining consistency and plate gap on the specific energy consumption and physical properties of liner were investigated. Higher refining consistency and narrower plate gap brought about the reduction of specific energy consumption to decrease the freeness. Refining consistency and plate gap did not affect the bulk, Taber stiffness and compression index. The reduction of freeness and/or the increase of specific energy consumption caused the decrease of bulk and Taber stiffness, but increased the compression index. The effect of grammage on bulk was not observed, but Taber stiffness and compression index were increased with grammage. The bulk was decreased with the reduction of freeness rapidly at the above 400 mL CSF, and then levelled off. It is expected that the reduction of energy consumption could be obtained from the application of higher refining consistency and narrower plate gap during refining.

Effect of Refining Load on the Drainage Characteristics of Pulp (고해부하가 지층 형성시 탈수특성에 미치는 영향)

  • 김용식;원종명
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.4
    • /
    • pp.10-17
    • /
    • 2000
  • The change of fiber length, freeness, initial forming drainage velocity, specific filtration resistance, final drainage time and wet web dryness were measured to investigate the effect of the refining load on the drainage characteristics of pulp. The arithmetic average fiber length after refining with higher refining load was shorter than that obtained with lower refining load. Higher refining load decreased initial forming drainage velocity, final drainage time and wet web dryness. The refining load also affected the relationship between freeness and specific filtration resistance, initial forming drainage velocity, final drainage time. It was found that the specific filtration resistance is better than freeness to predict the drainage characteristics of pulp and the wet dryness.

  • PDF

Effect of Refining Conditions and Grammage on the Bending Stiffness of Linerboard (고해 조건과 평량이 라이너 판지의 휨강성에 미치는 영향)

  • Won Jong Myoung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.3
    • /
    • pp.44-51
    • /
    • 2004
  • The effect of refining conditions and grammage on the stiffness of linerboard was investigated. The correlations between Taber stiffness and resonance stiffness were very low due to the different measuring principle. The refining conditions did not affect sig nificantly on both Taber and resonance stiffness estimated here. This means that it is strongly recommended to find and apply the refining conditions which can reduce specific energy consumption. Taber stiffness showed very high correlation for the thickness and elastic modulus of linerboard, while the resonance stiffness showed much lower correlation. Effective thicknesses for Taber stiffness were very well fitted with measured thickness, while those for resonance stiffness depended on the grammage of linerboard.

Effect of PFI mill and Valley beater refining on cellulose degree of polymerization, alpha cellulose contents, and crystallinity of wood and cotton fibers

  • Hai, Le Van;Park, Hee Jung;Seo, Yung Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.4
    • /
    • pp.27-33
    • /
    • 2013
  • Manufacturing fabrics from dissolving cellulosic pulp is increasing in these days. For making high quality of cellulose-based fabrics, control of cellulose DP (degree of polymerization), its alpha cellulose content, its brightness, and its crystallinity are important. To process the cellulosic raw material, refining of cellulosic fibers is essential, and it is important to know if refining affects those important cellulose properties. The effects of PFI mill and Valley beater refining on the alpha-cellulose content, cellulose DP, crystallinity, and paper mechanical properties of wood and two different cotton fibers were studied. The results showed that PFI mill refining rarely affected those properties. Fibers refined by a Valley beater displayed a small reduction in fiber length in comparison with those refined by a PFI mill. However, the Valley beater refining method produced almost no changes in cellulose properties, either. The refining process seemed to have very little effect on the cellulose DP, crystallinity index, or alpha-cellulose content until the freeness decreased to around 300 mL CSF for wood and 100 mL CSF for cotton fibers, respectively. There were also no differences in tensile strength development in two refining methods.

Optimization Technology of Thermomechanical Pulp Made from Pinus densiflora (I) - Effect of Temperature and NaOH at Presteaming and Refining - (국내산 소나무로 제조되는 열기계펄프 제조 기술 최적화 연구 (1) - 목재 칩의 전처리와 리파이닝 시 온도와 NaOH 처리의 효과 -)

  • Nam, Hyegeong;Kim, Chul-Hwan;Lee, Ji-Young;Park, Hyunghun;Kwon, Sol;Cho, Hu-Seung;Lee, Gyeong-Sun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.1
    • /
    • pp.35-44
    • /
    • 2015
  • Thermomechanical pulping process uses large amounts of energy, mostly electricity to run electrical facilities. Thermomechanical pulp (TMP) made from Pinus densiflora also has a big drawback that refining consumes 90 per cent of the total energy used in TMP process. This study explored to draw up a way to save refining energy through different thermal treatment at the stages of presteaming and refining. Presteaming temperature was $80^{\circ}C$, $100^{\circ}C$, and $120^{\circ}C$. After presteaming at each temperature, refining was carried out at $100^{\circ}C$, $120^{\circ}C$, and $140^{\circ}C$ respectively. In a presteaming stage, steaming temperature over $120^{\circ}C$ greatly contributed to the decrease of refining energy leading to earlier attainment of a target freeness, irrespective of refining temperature. In addition, NaOH treatment with presteaming enhanced better development of fiber properties during refining than presteaming without NaOH. High temperature refining at $140^{\circ}C$ produced a high strength paper, and wood chips treated by alkali responded better to refining than at over $120^{\circ}C$. Improved softening effect on wood chips led to the decrease in shives contents but it gave no effect on pitch contents of TMP.

Opportunities of Reducing Refining Energy Using Enzyme and Dry Strength Agent (효소처리와 지력증강제 활용을 통한 고해동력 절감)

  • 이학래;서만석;허용대;강태영
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.3
    • /
    • pp.29-36
    • /
    • 2003
  • Reducing the energy consumption while maintaining pulp quality is an important objective of today's paper industry. Enzymatic treatment of fibers and the application of dry strength agent were investigated as methods to reduce energy consumption during refining and to upgrade fiber characteristics. Modification of recycled fibers with an enzyme was effective in improving relining efficiency and reducing refining energy. Optimization of dry strength agent application conditions including stock pH, cationic demand, zeta potential, etc. were found to be very important for improving its effectiveness.

Study on the Beating Properties of CMC Pre-treated and Mixed Cotton Linter Pulp (제지용 면 펄프의 CMC 전처리 및 혼합 고해특성 연구)

  • Shin, Hyeon-Sik;Lee, Jin-Ho;Kim, Duk-Ki;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.4
    • /
    • pp.11-20
    • /
    • 2014
  • The objective of this study was to investigate the beating properties of two types of cotton pulps such as "cotton lint mixed pulp" and "cotton linter pulp". In order to improve refining characteristics, the effects of carboxymethyl-cellulose (CMC) pre-treatment, mixing ratio changes of cotton lint mixed pulp and cotton linter pulp, and refining load changes were analyzed. In mill application, it was possible to improve the refining characteristics and maintained the strength properties of the paper by applying increasing ratio of cotton linter pulp mixing and controlling the refining methods.

Analysis of Effects of Fiber's Collapse Index on Physical Properties of Paper Using CLSM (종이의 물리적 특성에 미치는 섬유의 찌그러짐 특성의 영향에 대한 CLSM 분석)

  • 김서환;박종문;김철환
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.46-51
    • /
    • 1999
  • The most important effect of refining is believed as the internal fibrillation. The internal fibrillation is the separation of the fiber wall into several lamellae. The internal fibrillation results in fiber swelling as water penetrates the fiber wall. The increase in paper strength as a result of refining was due to delamination which made the fiber more flexible. Pulp fibers are refined to 20, 40, and 70$^{\circ}$SR freeness at Valley beater. Changes of Physical paper properties are analyzed depending on fiber wall thickness and fiber's collapse index at 2.5 and 5.6kg$_f$ refining load. At same $^[\circ}$SR freeness with 2.5kg$_f$ refining load, fiber wall thickness is increased further than at high 5.6kg$_f$ refining load. With higher fiber wall thickness by lower intensity refining load, higher internal fibrillation, flexibility, collapsability of fibers are achieved. Those effects improve WRV, tensile strength, and burst strength. Tear strength shows opposite trend to tensile and burst strength as usual.

  • PDF

Enzymatic and mechanical treatment on chemical pulp

  • Yung, B.S.;Shin, Yoon-Chul;Jeon, Yang
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.172-177
    • /
    • 1999
  • Effect of fiber treatment with cellulase (Liftase A40), and with two refining methods (Valley beating and impact refining) on wood fiber and handsheet properties were investigated at three refining levels (300, 400, and 500ml) for two furnishes (NBKP and LBKP). Part of the treated furnishes were classified by 150 mesh screen into fine-free fiber, and fines. Fiber length analysis, WRV, zero-span strength, and other handsheet mechanical properties were compared. The study showed that Liftase A40 lowered the zero-span and the folding endurance of both furnishes (NBKP much more and LBKP much less). Pretreatment with Liftase A 40 followed by refining significantly lowered the fiber length and refining energy to reach to the target freeness. Impact refining, which is done by hitting the fibers vertically with rod at 20% solid content, kept the fiber length increased WRV, and improved handsheet mechanical properties much more than valley beating. Properties of fines from different sources were compared in detail in the study.

Effect of Pulp Properties on the Power Consumption in Low Consistency Refining

  • LIU, Huan;DONG, Jixian;QI, Kai;GUO, Xiya;YAN, Ying;QIAO, Lijie;DUAN, Chuanwu;ZHAO, Zhiming
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.869-877
    • /
    • 2020
  • The power consumption in the low consistency (LC) refining is an important indicator for the optimal control of the process and it is composed of the net power and the no-load power. The refining efficiency and process characterization of LC refining are directly affected by power consumption. In this paper, the effect of pulp consistency and average fiber length on the power consumption and refining efficiency were studied through the LC refining trials conducted by an experimental disc refiner. It is found that the curve of power-gap clearance can be divided into constant power section, power reduction section, and power increase section. And the no-load power and the adjustable domain of loading applied by the refining plates will increase as the increase of pulp consistency, while the increase of net power is larger than that of no-load power which makes the increasing of refining efficiency. Meanwhile, the adjustable domain of loading applied by the refining plates can be slightly improved by increasing the average fiber length, but its effect on the no-load power in the LC refining process can be neglected. The study of power consumption in LC refining is of positive significance for the proper selection of pulp properties in LC refining, in-depth exploration of refining mechanism, and energy consumption reduction in refining.