• Title/Summary/Keyword: Refinement Algorithm

Search Result 183, Processing Time 0.017 seconds

A Method of Generating Table-of-Contents for Educational Video (교육용 비디오의 ToC 자동 생성 방법)

  • Lee Gwang-Gook;Kang Jung-Won;Kim Jae-Gon;Kim Whoi-Yul
    • Journal of Broadcast Engineering
    • /
    • v.11 no.1 s.30
    • /
    • pp.28-41
    • /
    • 2006
  • Due to the rapid development of multimedia appliances, the increasing amount of multimedia data enforces the development of automatic video analysis techniques. In this paper, a method of ToC generation is proposed for educational video contents. The proposed method consists of two parts: scene segmentation followed by scene annotation. First, video sequence is divided into scenes by the proposed scene segmentation algorithm utilizing the characteristics of educational video. Then each shot in the scene is annotated in terms of scene type, existence of enclosed caption and main speaker of the shot. The ToC generated by the proposed method represents the structure of a video by the hierarchy of scenes and shots and gives description of each scene and shot by extracted features. Hence the generated ToC can help users to perceive the content of a video at a glance and. to access a desired position of a video easily. Also, the generated ToC automatically by the system can be further edited manually for the refinement to effectively reduce the required time achieving more detailed description of the video content. The experimental result showed that the proposed method can generate ToC for educational video with high accuracy.

Template-Matching-based High-Speed Face Tracking Method using Depth Information (깊이 정보를 이용한 템플릿 매칭 기반의 고속 얼굴 추적 방법)

  • Kim, Wooyoul;Seo, Youngho;Kim, Dongwook
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.349-361
    • /
    • 2013
  • This paper proposes a fast face tracking method with only depth information. It is basically a template matching method, but it uses a early termination scheme and a sparse search scheme to reduce the execution time to solve the problem of a template matching method, large execution time. Also a refinement process with the neighboring pixels is incorporated to alleviate the tracking error. The depth change of the face being tracked is compensated by predicting the depth of the face and resizing the template. Also the search area is adjusted on the basis of the resized template. With home-made test sequences, the parameters to be used in face tracking are determined empirically. Then the proposed algorithm and the extracted parameters are applied to the other home-made test sequences and a MPEG multi-view test sequence. The experimental results showed that the average tracking error and the execution time for the home-made sequences by Kinect ($640{\times}480$) were about 3% and 2.45ms, while the MPEG test sequence ($1024{\times}768$) showed about 1% of tracking error and 7.46ms of execution time.

Prediction of Customer Satisfaction Using RFE-SHAP Feature Selection Method (RFE-SHAP을 활용한 온라인 리뷰를 통한 고객 만족도 예측)

  • Olga Chernyaeva;Taeho Hong
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.325-345
    • /
    • 2023
  • In the rapidly evolving domain of e-commerce, our study presents a cohesive approach to enhance customer satisfaction prediction from online reviews, aligning methodological innovation with practical insights. We integrate the RFE-SHAP feature selection with LDA topic modeling to streamline predictive analytics in e-commerce. This integration facilitates the identification of key features-specifically, narrowing down from an initial set of 28 to an optimal subset of 14 features for the Random Forest algorithm. Our approach strategically mitigates the common issue of overfitting in models with an excess of features, leading to an improved accuracy rate of 84% in our Random Forest model. Central to our analysis is the understanding that certain aspects in review content, such as quality, fit, and durability, play a pivotal role in influencing customer satisfaction, especially in the clothing sector. We delve into explaining how each of these selected features impacts customer satisfaction, providing a comprehensive view of the elements most appreciated by customers. Our research makes significant contributions in two key areas. First, it enhances predictive modeling within the realm of e-commerce analytics by introducing a streamlined, feature-centric approach. This refinement in methodology not only bolsters the accuracy of customer satisfaction predictions but also sets a new standard for handling feature selection in predictive models. Second, the study provides actionable insights for e-commerce platforms, especially those in the clothing sector. By highlighting which aspects of customer reviews-like quality, fit, and durability-most influence satisfaction, we offer a strategic direction for businesses to tailor their products and services.