• Title/Summary/Keyword: Reference light signal

Search Result 52, Processing Time 0.027 seconds

Illumination Control in Visible Light Communication Using Manchester Code with Sync-Mark Signal

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.149-155
    • /
    • 2020
  • In this study, we employed Manchester code for illumination control and flicker prevention of the light-emitting diode (LED) used in a visible light communication (VLC) system. In the VLC transmitter, the duty factor of the Manchester code was utilized for illumination control; in the VLC receiver, the spike signal from an RC-high pass filter was utilized to recover the transmitted signal whilst suppressing the 120-Hz noise arising from adjacent lighting lamps. Instead of the clock being transmitted in a separate channel, a syncmark signal was transmitted in front of each data byte and used as the reference time for transforming the Manchester code to non-return-to-zero (NRZ) data in the receiver. In experiments, the LED illumination was controlled in the range of approximately 12-84% of the constant wave (CW) light via changing of the duty factor from 10% to 90%. This scheme is useful for constructing indoor wireless sensor networks using LED light that is flicker-free and presents capability for illumination control.

Light Modulation based on PPG Signal Processing for Biomedical Signal Monitoring Device (생체 정보 감시 장치를 위한 광변조 기법의 PPG 신호처리)

  • Lee, Han-Wook;Lee, Ju-Won;Jeong, Won-Geun;Kim, Seong-Hoo;Lee, Gun-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.6
    • /
    • pp.503-509
    • /
    • 2009
  • The development of technology has led to ubiquitous health care service, which enables many patients to receive medical services anytime and anywhere. For the ubiquitous health care environment, real-time measurement of biomedical signals is very important, and the medical instruments must be small and portable or wearable. So, such devices have been developed to measure biomedical signals. In this study, we develop the biomedical monitoring device which is sensing the PPG signal, one of the useful signal in the field of ubiquitous healthcare. We design a watch-like biomedical signal monitoring system without a finger probe to prevent the user's inconvenience. This system obtains the PPG from the radial artery using a sensor in the wrist band. But, new device developed in this paper is easy to get the motion artifacts. So, we proposed new algorithm removing the motion artifacts from the PPG signal. The method detects motion artifacts by changing the degree of brightness of the light source. If the brightness of the light source is reduced, the PPG pulses will disappear. When the PPG pulses have disappeared completely, the remaining signal is not the signal that results from the changing blood flow. We believe that this signal is the motion artifact and call it the noise reference signal. The motion artifacts are removed by subtracting the noise reference signal from the input signal. We apply this algorithm to the system, so we can stabilize the biomedical monitoring system we designed.

Design and characteristics of a fiber-optic pressure sensor (광압력 센서의 설계 및 특성)

  • Kim, Young-Soo;Kim, Yo-Hee;Strigalev, V. E.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.508-510
    • /
    • 1995
  • A fiber-optic pressure sensor is fabricated with a photoelastic glass material. To remove the influence of external pertubation along the optical fiber, a new referencing technique is proposed by using two light sources. LED with 870nm wavelength is used as light source for reference signal, and LED with 660nm wavelength is used as light source for modulation signal. The fiber-optic pressure sensor system shows good linearity within the pressure range of 0 to 5 $kg/cm^2$.

  • PDF

Autonomous Optical Thinking Machine Dealing with Impression of Pictures

  • TAMANO, KazuHo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.423-425
    • /
    • 1998
  • An optical system which can autonomously form and display an impression of a picture made up by many figures has been developed. This system consists of optical fuzzy-neurons which calculate the correlation between the input picture and the reference image by incoherent optics. The calculated signal is applied to an amplifier whereby the output signal increases, then decreases according to increase of the input signal . These outputs are synthesized, and are used for changing the position where the system gaze on a part of the input picture by light beam. In this system, the light intensity used for gazing changes chaotically, The attractor drawn from the change of light intensity corresponds to the impression of the picture. This paper shows the results that are calculated by the numerical simulation. The system has been simulated to express the impression for a picture formed by 4figures.

  • PDF

Analyzing Preprocessing for Correcting Lighting Effects in Hyperspectral Images (초분광영상의 조명효과 보정 전처리기법 분석)

  • Yeong-Sun Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.785-792
    • /
    • 2023
  • Because hyperspectral imaging provides detailed spectral information across a broad range of wavelengths, it can be utilized in numerous applications, including environmental monitoring, food quality inspection, medical diagnosis, material identification, art authentication, and crime scene analysis. However, hyperspectral images often contain various types of distortions due to the environmental conditions during image acquisition, which necessitates the proper removal of these distortions through a data preprocessing process. In this study, a preprocessing method was investigated to effectively correct the distortion caused by artificial light sources used in indoor hyperspectral imaging. For this purpose, a halogen-tungsten artificial light source was installed indoors, and hyperspectral images were acquired. The acquired images were then corrected for distortion using a preprocessing that does not require complex auxiliary equipment. After the corrections were made, the results were analyzed. According to the analysis, a statistical transformation technique using mean and standard deviation with reference to a reference signal was found to be the most effective in correcting distortions caused by artificial light sources.

Study on Underwater Black Box Data Recovery System using Optical Wireless Communication (수중 가시광 통신을 이용한 블랙박스 데이터 회수 시스템 연구)

  • Son, Hyeon-joong;Choi, Hyeung-sik;Kang, Jin-il;Sur, Joo-no;Jeong, Seong-hoon;Lee, Jaeheon;Kim, Seo-kang
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • Underwater wireless light communication system is quite necessary to retrieve recorded data from underwater devices or the black box without taking back it body. In this paper, a research on the light sensor technology in underwater wireless light communication under turbid sea was studied. A noise source under turbid sea for light communication was analysed, and a sensor system for light sensing using the reference light signal to remove the noises and to improve the output swing power wasstudied. Also, an underwater communication system was manufactured to validate the good performance of the development system, and using the system, the good performance of the developed system was validated through the light communication test in the tank containing the turbid sea water was presented.

Color Temperature Conversion of Uncalibrated Video Signal Based on Color Compensation in POP-TV

  • Do, Hyun-Chul;Chien, Sung-Il;Tae, Heung-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.718-721
    • /
    • 2003
  • It is often desirable that manufacturers and users can convert the reference white of display into the preferred color temperature by controlling the color temperature that is one of representative color characteristics of a light source. Accordingly, this paper proposes an efficient method of color compensation for displaying the uncalibrated video signal in PDP-TV and is also shown to be successfully coupled with flexible color temperature conversion based on the signal processing technique.

  • PDF

A Study on the Monitoring of Laser Welding for S45C Steel Sheets Using Nd:YAG Laser with Continuous Waves (연속파형 Nd:YAG레이저를 이용한 S45C 강판의 레이저 용접 모니터링에 관한 연구)

  • Kim, Do-Hyoung;Shin, Ho-Jun;Yoo, Young-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.814-823
    • /
    • 2012
  • Fluctuation of light intensity from the keyhole becomes more significant in full penetration welding than partial penetration welding, since the plasma produced in the keyhole can escape from the rear side of the keyhole. The plasma optical radiation emitted during Nd:YAG laser welding of S45C steel samples has been detected with a Photodiode and analyzed under different process conditions. As the results, the BOP was performed for welding, behavior of plasma, spatter or plume was monitored to determine the reference signal. Then, random combination was made for comparison with the reference signal, which aimed at verifying reliability of the welding monitoring system that this study intended to develop.

A Study on Optical Coherence Tomography System by Using the Optical Fiber (광섬유를 이용한 광영상단층촬영기 제작에 관한 연구)

  • 양승국;박양하;장원석;오상기;이석정;김기문
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.34-40
    • /
    • 2004
  • In this paper, we have studied the OCT(Optical Coherence Tomography) system which has been advantages of high resolution, 2-D cross-sectional images, low cost and small size configuration. The characteristics of light source determine the resolution and coherence length. The light source has a commercial SLD with a central wavelength of 1,285 ill11, 35.3 nm(FWHM). The optical delay line is necessary to make equal with the optical path length to scattered light or reflected light from a sample. In order to make equal the optical path length, the stage that is attached to a reference mirror is controled by a step motor. And the interferometer is configured with the Michelson interferometer by using a single mode fiber, and the scanner can be focused on the sample by using a reference ann Also, the 2-dimension cross-sectional images were measured with scanning the transverse direction of the sample by using a step motor. After detecting the internal signal of lateral direction, a scanner is moved to obtain the cross-sectional image of 2-dimension by using step motor. A photodiode, which has high detection sensitivity and excellent noise characteristics has been used. The detected small signal has a noise and interference. After filtering and amplifying the signal, the output signal is demodulated the waveform And then, a cross-sectional image is seen through converting this signal into a digitalized signal by using an AID converter. The resolution of the sample is about 30${\mu}{\textrm}{m}$, which corresponds to the theoretical resolution. Also, the cross-sectional images of onion cells were measured in real time scheme.

3D Measurement of TSVs Using Low Numerical Aperture White-Light Scanning Interferometry

  • Jo, Taeyong;Kim, Seongryong;Pahk, Heuijae
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.317-322
    • /
    • 2013
  • We have proposed and demonstrated a low numerical aperture technique to measure the depth of through silicon vias (TSVs) using white-light scanning interferometry. The high aspect ratio hole like TSV's was considered to be impossible to measure using conventional optical methods due to low visibility at the bottom of the hole. We assumed that the limitation of the measurement was caused by reflection attenuation in TSVs. A novel interference theory which takes the structural reflection attenuation into consideration was proposed and simulated. As a result, we figured out that the low visibility in the interference signal was caused by the unbalanced light intensity between the object and the reference mirror. Unbalanced light can be balanced using an aperture at the illumination optics. As a result of simulation and experiment, we figured out that the interference signal can be enhanced using the proposed technique. With the proposed optics, the depth of TSVs having an aspect ratio of 11.2 was measured in 5 seconds. The proposed method is expected to be an alternative method for 3-D inspection of TSVs.