• Title/Summary/Keyword: Reference geometry measurement

Search Result 24, Processing Time 0.028 seconds

Efficient Experimental Design for Measuring Magnetic Susceptibility of Arbitrarily Shaped Materials by MRI

  • Hwang, Seon-ha;Lee, Seung-Kyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.3
    • /
    • pp.141-149
    • /
    • 2018
  • Purpose: The purpose of this study is to develop a simple method to measure magnetic susceptibility of arbitrarily shaped materials through MR imaging and numerical modeling. Materials and Methods: Our 3D printed phantom consists of a lower compartment filled with a gel (gel part) and an upper compartment for placing a susceptibility object (object part). The $B_0$ maps of the gel with and without the object were reconstructed from phase images obtained in a 3T MRI scanner. Then, their difference was compared with a numerically modeled $B_0$ map based on the geometry of the object, obtained by a separate MRI scan of the object possibly immersed in an MR-visible liquid. The susceptibility of the object was determined by a least-squares fit. Results: A total of 18 solid and liquid samples were tested, with measured susceptibility values in the range of -12.6 to 28.28 ppm. To confirm accuracy of the method, independently obtained reference values were compared with measured susceptibility when possible. The comparison revealed that our method can determine susceptibility within approximately 5%, likely limited by the object shape modeling error. Conclusion: The proposed gel-phantom-based susceptibility measurement may be used to effectively measure magnetic susceptibility of MR-compatible samples with an arbitrary shape, and can enable development of various MR engineering parts as well as test biological tissue specimens.

Coordinate Transform Method of Surface Image Velocimetry with a Calibrated Camera (보정된 카메라를 이용한 표면영상유속계의 좌표변환방법)

  • Yu, Kwon-Kyu;Jung, Beom-Seok;Yoon, Byung-Man
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.7
    • /
    • pp.701-709
    • /
    • 2008
  • Surface Image Velocimetry (SIV) is an instrument to measure water surface velocity by using image processing techniques. It gives us one of the easiest ways to measure water velocity. However, since it requires a set of plane survey data to estimate the velocity, it may give us some kind of misconcept that its usage would be difficult or cumbersome in spite of its handiness. If it has a feature that can estimate the plane survey data easily, it may be treated as like one of the conventional propeller velocimetries and its applicability would be improved so high. The present study is to propose a method to estimate the plane geometry of the physical coordinate with a calibrated camera. With the feature we can half-automatize the estimating procedure for the whole water velocity field. Photogrammetric technique to calculate the plane coordinates of the reference points with a calibrated camera was studied, which has originally studied for long time in the field of computer vision. By applying this technique to SIV, it is possible to estimate the location of reference coordinates for projective transform without plane survey. With this procedure the cumbersome plane survey for the reference points is omitted. One example application of the developed method showed fairly good results with insignificant errors.

Modal Characteristics of Control Element Assembly Shroud for Korean Standard Nuclear Power Plant(II : Test and Post-Test Analysis) (한국표준형 원자력발전소 제어봉집합체 보호구조물의 모우드 특성 II)

  • Jhung, Myung-Jo;Park, Keun-Bae;Song, Heuy-Gap;Choi, Suhn
    • Computational Structural Engineering
    • /
    • v.5 no.4
    • /
    • pp.93-102
    • /
    • 1992
  • The design of reactor internals requires the accurate vibration characteristics of each component for subsequent dynamic structural response analyses. For Korean standard nuclear power plant some modifications on the Control Element Assembly shroud from the reference design have been made, Since the shroud is complex in geometry having an array of vertical round tubes and webs in a square grid pattern, and being tied down by preloaded tie rods into position, it is planned to perform a vibration measurement program consisting of both experimental and analytical modal studies upon that component. The shroud modal testing was performed on the low frequency global survey to measure the first several modes. The analysis using the finite element model was also performed for the as-tested conditions. The natural frequencies and mode shapes from both test and analysis have been acquired and compared to be in good agreement. It is concluded that finite element model generated is good enough to be used in the design for the dynamic response analysis under various loading conditions.

  • PDF

A study on Iris Recognition using Wavelet Transformation and Nonlinear Function

  • Hur, Jung-Youn;Truong, Le Xuan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.553-559
    • /
    • 2004
  • In todays security industry, personal identification is also based on biometric. Biometric identification is performed basing on the measurement and comparison of physiological and behavioral characteristics, Biometric for recognition includes voice dynamics, signature dynamics, hand geometry, fingerprint, iris, etc. Iris can serve as a kind of living passport or living password. Iris recognition system is the one of the most reliable biometrics recognition system. This is applied to client/server system such as the electronic commerce and electronic banking from stand-alone system or networks, ATMs, etc. A new algorithm using nonlinear function in recognition process is proposed in this paper. An algorithm is proposed to determine the localized iris from the iris image received from iris input camera in client. For the first step, the algorithm determines the center of pupil. For the second step, the algorithm determines the outer boundary of the iris and the pupillary boundary. The localized iris area is transform into polar coordinates. After performing three times Wavelet transformation, normalization was done using sigmoid function. The converting binary process performs normalized value of pixel from 0 to 255 to be binary value, and then the converting binary process is compare pairs of two adjacent pixels. The binary code of the iris is transmitted to the by server. the network. In the server, the comparing process compares the binary value of presented iris to the reference value in the University database. Process of recognition or rejection is dependent on the value of Hamming Distance. After matching the binary value of presented iris with the database stored in the server, the result is transmitted to the client.

  • PDF

0.65-7 GHz Inverse Conical Antenna for Reverberation Chamber (전자파 잔향실용 0.65-7 GHz 광대역 역원뿔 안테나 설계)

  • Jeong, Jin-Young;Chung, Jae-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.10-14
    • /
    • 2017
  • A reverberation chamber is widely used in mobile handset measurements due to its faster and simpler measurement process compared to traditional anechoic chambers. We propose an ultra-wideband inverse conical antenna design suitable as a reference antenna in a reverberation chamber. Traditionally, multiple discone antennas are needed to cover more than 10:1 operation bandwidth of a reverberation chamber. The proposed inverse conical antenna offers wideband impedance matching bandwidth by virtue of the linear impedance transition along its oblique side. The antenna is feasible to mount on the conductive walls which can be utilized as a ground to improve the matching bandwidth, antenna gain and radiation patterns. The antenna geometry is optimized using a 3D electromagnetic simulation tool and fabricated using a 3D printer. The measured results show that the antenna reflection coefficient lower than -10dB and radiation efficiency more than 70% at the frequency range of 0.65~7 GHz.

Simulation of Counting Efficiencies of Portable NaI Detector for Rapid Screening of Internal Exposure in Radiation Emergencies (방사선비상시 내부피폭 신속 분류를 위한 휴대용 NaI 검출기의 계측효율 전산모사)

  • Ha, Wi-Ho;Yoo, Jaeryong;Yoon, Seokwon;Pak, Min Jung;Kim, Jong Kyoung
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.211-215
    • /
    • 2015
  • In case of radiation emergencies, radioactive materials released into environments can cause internal exposure of members of the public. Even though whole body counters are widely used for direct measurement of internally deposited radionuclides, those are not likely to be used at the field to rapidly screen internal exposure. In this study, we estimated the counting efficiencies of portable NaI detector for different size BOMAB phantoms using Monte Carlo transport code to apply handheld gamma spectrometers for rapid screening of internal exposure following radiological accidents. As a result of comparison for two counting geometries, counting efficiencies for sitting model were about 1.1 times higher than those for standing model. We found, however, that differences of counting efficiencies according to different size are higher than those according to counting geometry. Therefore, we concluded that when we assess internal exposure of small size people compared to the reference male, the body size should be considered to estimate more accurate radioactivity in the human body because counting efficiencies of 4-year old BOMAB phantom were about 2.4~3.1 times higher than those of reference male BOMAB phantom.

Derivation of Nacelle Transfer Function Using LiDAR Measurement (라이다(LiDAR) 측정을 이용한 나셀전달함수의 유도)

  • Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.929-936
    • /
    • 2015
  • Nacelle anemometers are mounted on wind-turbine nacelles behind blade roots to measure the free-stream wind speed projected onto the wind turbine for control purposes. However, nacelle anemometers measure the transformed wind speed that is due to the wake effect caused by the blades' rotation and the nacelle geometry, etc. In this paper, we derive the Nacelle Transfer Function (NTF) to calibrate the nacelle wind speed to the free-stream wind speed, as required to carry out the performance test of wind turbines according to the IEC 61400-12-2 Wind-Turbine Standard. For the reference free-stream wind data, we use the Light Detection And Ranging (LiDAR) measurement at the Shinan wind power plant located on the Bigeumdo Island shoreline. To improve the simple linear regression NTF, we derive the multiple nonlinear regression NTF. The standard error of the wind speed was found to have decreased by a factor of 9.4, whereas the mean of the power-output residual distribution decreased by 6.5 when the 2-parameter NTF was used instead of the 1-parameter NTF.

Study on Determination of Boron using the PGAA Facility at HANARO Research Reactor (하나로의 즉발감마선 방사화분석 장치를 이용한 붕소의 정량에 대한 연구)

  • Chung, Young-Sam;Cho, Hyun-Jae;Moon, Jong-Hwa;Kim, Sun-Ha;Kim, Young-Jin
    • Analytical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.391-398
    • /
    • 2003
  • Basic research for the determination of boron content in biological sample has been carried out using the PGAA facility of the 24MW research reactor(HANARO). For investigation of characteristics for the measurement condition, neutron flux and its homogeneity were measured at irradiating geometry. The size of thermal neutron beam collimated from beam guide is $2{\times}2cm^2$ at the sample position. The neutron flux measured was the range of $1.0{\sim}6.5{\times}10^7n{\cdot}cm^{-2}{\cdot}s^{-1}$, and flux distribution from center within the radius of 4.5 mm and 9.0 mm was $5.77{\pm}0.71{\times}10^7n{\cdot}cm^{-2}{\cdot}s^{-1}$ and $4.68{\pm}1.64{\times}10^7n{\cdot}cm^{-2}{\cdot}s^{-1}$, respectively. Accordingly, sample size is adjusted within 10 mm for a homogeneous irradiation of high quality. Measurement system is designed to reduce the background source by Compton scattering and to improve the analytical sensitivity. To investigate the energy calibration and Compton suppression effect of gamma-ray counting system, the background conditions on both of Compton and single-mode were measured using NaCl standard. On the other hand, degree of spectral interference for sodium 472 keV peak as a matrix effect in the sample is established for an accurate boron analysis, and then boron content in three certified reference materials (NIST SRM 1570a, 1547, 1573a) was measured by using two modes and the results were compared with each other.

Descent Dataset Generation and Landmark Extraction for Terrain Relative Navigation on Mars (화성 지형상대항법을 위한 하강 데이터셋 생성과 랜드마크 추출 방법)

  • Kim, Jae-In
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1015-1023
    • /
    • 2022
  • The Entry-Descent-Landing process of a lander involves many environmental and technical challenges. To solve these problems, recently, terrestrial relative navigation (TRN) technology has been essential for landers. TRN is a technology for estimating the position and attitude of a lander by comparing Inertial Measurement Unit (IMU) data and image data collected from a descending lander with pre-built reference data. In this paper, we present a method for generating descent dataset and extracting landmarks, which are key elements for developing TRN technologies to be used on Mars. The proposed method generates IMU data of a descending lander using a simulated Mars landing trajectory and generates descent images from high-resolution ortho-map and digital elevation map through a ray tracing technique. Landmark extraction is performed by an area-based extraction method due to the low-textured surfaces on Mars. In addition, search area reduction is carried out to improve matching accuracy and speed. The performance evaluation result for the descent dataset generation method showed that the proposed method can generate images that satisfy the imaging geometry. The performance evaluation result for the landmark extraction method showed that the proposed method ensures several meters of positioning accuracy while ensuring processing speed as fast as the feature-based methods.

Dead Layer Thickness and Geometry Optimization of HPGe Detector Based on Monte Carlo Simulation

  • Suah Yu;Na Hye Kwon;Young Jae Jang;Byungchae Lee;Jihyun Yu;Dong-Wook Kim;Gyu-Seok Cho;Kum-Bae Kim;Geun Beom Kim;Cheol Ha Baek;Sang Hyoun Choi
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.129-135
    • /
    • 2022
  • Purpose: A full-energy-peak (FEP) efficiency correction is required through a Monte Carlo simulation for accurate radioactivity measurement, considering the geometrical characteristics of the detector and the sample. However, a relative deviation (RD) occurs between the measurement and calculation efficiencies when modeling using the data provided by the manufacturers due to the randomly generated dead layer. This study aims to optimize the structure of the detector by determining the dead layer thickness based on Monte Carlo simulation. Methods: The high-purity germanium (HPGe) detector used in this study was a coaxial p-type GC2518 model, and a certified reference material (CRM) was used to measure the FEP efficiency. Using the MC N-Particle Transport Code (MCNP) code, the FEP efficiency was calculated by increasing the thickness of the outer and inner dead layer in proportion to the thickness of the electrode. Results: As the thickness of the outer and inner dead layer increased by 0.1 mm and 0.1 ㎛, the efficiency difference decreased by 2.43% on average up to 1.0 mm and 1.0 ㎛ and increased by 1.86% thereafter. Therefore, the structure of the detector was optimized by determining 1.0 mm and 1.0 ㎛ as thickness of the dead layer. Conclusions: The effect of the dead layer on the FEP efficiency was evaluated, and an excellent agreement between the measured and calculated efficiencies was confirmed with RDs of less than 4%. It suggests that the optimized HPGe detector can be used to measure the accurate radioactivity using in dismantling and disposing medical linear accelerators.