• Title/Summary/Keyword: Reference gas

Search Result 474, Processing Time 0.029 seconds

A study on development of plasma-arc cutting system with computer-numerical control (컴퓨터수치제어(CNC) 플라즈마 아아크 절단장치 개발에 관한 연구)

  • 노태정;나석주;나규환
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.60-69
    • /
    • 1990
  • Plasma arc cutting is a fusion cutting process in which a gas-constricted arc is employed to produce a high-temperature, high-velocity plasma jet on the workpiece. This process provides some advantages such as increased cutting velocity, excellent working accuracy and the ability to cut special materials (widely used stainless steels and Al-alloys, for example), when compared with iconventional oxyfuel gas cutting. From the view point of price and reliability of the power source, plasma arc cutting has also some distinct advantages over laser beam cutting. High-speed machines with NC or CNC systems are needed for the plasma arc or laser beam cutting process, while for oxyfuel gas cutting, low-speed machines with copying templates or optical-shape tracking sensors can be applied. The low price and high flexibility of the microprocessor arc contributing more and more the application of CNC system in the plasma arc cutting process, as in other manufacturing fields. From these points of view, a microprocessor-based plasma arc cutting system was developed by using a reference-pulse system, and its performance was tested. The interpolating routines were programmed in the assembly language for saving the memory volume and improving the compouting speed, which has an intimate relationship with the available cutting velocity.

  • PDF

Solid-State $CO_2$ Sensor using ${Li_2}{CO_3}-{Li_3}{PO_4}-{Al_2}{O_3}$ Solid Electrolyte and ${LiMn_2}{O_4}$ as Reference Electrode (${Li_2}{CO_3}-{Li_3}{PO_4}-{Al_2}{O_3}$계의 고체 전해질 및 ${LiMn_2}{O_4}$의 기준전극을 사용한 $CO_2$ 가스센서)

  • 김동현;윤지영;박희찬;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.817-823
    • /
    • 2000
  • A solid-state electrochemicall cell for sensing CO2 gas was fabricated using a solid electrolyte of Li2CO3-Li3PO4-Al2O3 mixture and a reference electrode of LiMn2O4. The e.m.f. (electromotive force) of sensor showed a good accordance with theoretical Nernst slope (n=2) for CO2 gas concentration range of 100-10000 ppm above 35$0^{\circ}C$. The e.m.f. of sensor was constant regardless of oxygen partial pressure at the high temperature above 0.1 atm. It was, however, a little depended on oxygen partial pressure as the pressure decreased below 0.1 atm. The oxygen-dependency of our sensor gradually disappeared as the operating temperature increased. The sensing behavior of our CO2 sensor was affected by the presence of water vapor, but its effect was small comparing with other sensors.

  • PDF

Encapsulation of Semiconductor Gas Sensors with Gas Barrier Films for USN Application

  • Lee, Hyung-Kun;Yang, Woo Seok;Choi, Nak-Jin;Moon, Seung Eon
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.713-718
    • /
    • 2012
  • Sensor nodes in ubiquitous sensor networks require autonomous replacement of deteriorated gas sensors with reserved sensors, which has led us to develop an encapsulation technique to avoid poisoning the reserved sensors and an autonomous activation technique to replace a deteriorated sensor with a reserved sensor. Encapsulations of $In_2O_3$ nanoparticles with poly(ethylene-co-vinyl alcohol) (EVOH) or polyvinylidene difluoride (PVDF) as gas barrier layers are reported. The EVOH or PVDF films are used for an encapsulation of $In_2O_3$ as a sensing material and are effective in blocking $In_2O_3$ from contacting formaldehyde (HCHO) gas. The activation process of $In_2O_3$ by removing the EVOH through heating is effective. However, the thermal decomposition of the PVDF affects the property of the $In_2O_3$ in terms of the gas reactivity. The response of the sensor to HCHO gas after removing the EVOH is 26%, which is not significantly different with the response of 28% in a reference sample that was not treated at all. We believe that the selection of gas barrier materials for the encapsulation and activation of $In_2O_3$ should be considered because of the ill effect the byproduct of thermal decomposition has on the sensing materials and other thermal properties of the barrier materials.

Building Calibration Curve for Py-GC/MS Analysis of SBR/BR Blend Rubber Compounds

  • Chae, Eunji;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.281-288
    • /
    • 2020
  • A calibration curve is needed to determine the SBR and BR blend ratio of SBR/BR blend rubber compounds using pyrolysis-gas chromatography/mass chromatography (Py-GC/MS) or Py-GC. In general, a calibration curve is obtained using reference SBR/BR vulcanizates with various blend ratios. In this study, the calibration curves were obtained using reference samples made of rubber solutions and were compared to those plotted using the reference SBR/BR vulcanizates. Calibration curves using variations of 1,3-butadiene/styrene, 4-vinylcyclohexene (VCH)/styrene, 2-phenylpropene (PhP)/butadiene, PhP/VCH, 4-phenylcyclohexene (PhCH)/butadiene, and PhCH/VCH ratios with the BR content were examined for the suitability. We found that the calibration curves obtained using the mixed rubber solution references (1,3-butadiene/styrene and PhP/butadiene) could replace those constructed using the reference SBR/BR vulcanizates. The calibration curves of 1,3-butadiene/styrene and PhP/butadiene obtained using the raw references can be used for the determination of the SBR/BR blend ratios by applying some correction factors.

A Study on Full and Part Load Operations of a Biogas-fired Gas Turbine Combined Heat and Power System (바이오 가스를 사용하는 가스터빈 열병합 시스템의 전부하 및 부분부하 운전특성 해석)

  • Kang, Do-Won;Lee, Jong-Jun;Kim, Tong-Seop;Hur, Kwang-Beom
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.35-40
    • /
    • 2011
  • This study analyzed the influence of firing biogas on the performance and operation of a gas turbine combined heat and power (CHP) system. A reference CHP system designed with natural gas fuel was set up and off-design simulation was made to investigate the impact of firing biogas in the system. Changes in critical operating parameters such as compressor surge margin and turbine blade temperature caused by firing biogas were examined, and a couple of operating schemes to mitigate their changes were simulated. Part load operation of the biogas-fired system was compared with that of natural-gas fired system, and it was found that as long as the two system produce the same electric power output, they exhibit nearly the same heat recovery.

Measurement of Gas Concentration and flow Rate Using Hot Wire (열선을 이용한 혼합기체의 농도와 유량의 측정)

  • Kim, Young-Han;Park, Jong-Jueng
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.407-412
    • /
    • 2002
  • A measurement device for gas concentration and flow rate using hot wire is developed for the utilization in industrial applications. The device has two cells of measuring and reference, and a bridge circuit is installed to detect electric current through the hot wire in the cells. An amplification of the signal and conversion to digital output are conducted for the on-line measurement with a personal computer. The flow rate of air and carbon dioxide gas is separately measured for the performance examination of the device. Also, the concentration of air-carbon dioxide and carbon dioxide-argon mixtures is determined for the same evaluation. The outcome of the performance test indicates that the accuracy and stability of the device is satisfactory for the purpose of industrial applications.

Identification of Partial Discharge Defects based on Back- Propagation Algorithm in Eco-friendly Insulation Gas

  • Sung-Wook Kim
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.3
    • /
    • pp.233-238
    • /
    • 2023
  • This study presents a method for identifying partial discharge defects in an eco-friendly gas insulated system using a backpropagation algorithm. Four partial discharge (PD) electrode systems, namely, a free-moving particle, protrusion on the conductor, protrusion on the enclosure, and voids, were designed to simulate PD defects that can occur during the operation of eco-friendly gas-insulated switchgear. The PD signals were measured using an ultrahigh-frequency sensor as a nonconventional method based on IEC 62478. To identify the types of PD defects, the PD parameters of single PD pulses in the time and frequency domains and the phase-resolved partial discharge patterns were extracted, and a back-propagation algorithm in the artificial neural network was designed using a virtual instrument based on LabVIEW. The backpropagation algorithm proposed in this paper has an accuracy rate of over 90% for identifying the types of PD defects, and the result is expected to be used as a reference database for asset management and maintenance work for eco-friendly gas-insulated power equipment.

Development of 10 μmol/mol Hydrogen Sulfide Primary Standard Gas for Odor Measurements (악취측정용 10 μmol/mol 황화수소 표준가스 개발)

  • Kim, Yong-Doo;Bae, Hyun-Kil;Kim, Dalho;Oh, Sang-Hyub;Lee, Jin Hong;Lee, Sangil
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.46-51
    • /
    • 2018
  • Hydrogen sulfide from landfill and sewage treatment plant is a major odor component and causes many civil petitions. Rapidly developing industries release hydrogen sulfide, an odorous gas, to the atmosphere. This study aims to develop a $10{\mu}mol/mol$ concentration level hydrogen sulfide primary standard gas for odor measurement. The hydrogen sulfide gas was prepared at a nominal concentration of $10{\mu}mol/mol$ in nitrogen using the gravimetric method described in ISO 6142. Replicate standard gases were produced in 4 aluminium cylinders, and their concentrations were verified by GC-AED. The uncertainty of production was less than 0.50 %, and the variation of the 4 replicates was 0.22 %. The wall adsorption of hydrogen sulfide in cylinders was 0.10 % at 1500 psi, and the concentration was estimated to be long-term stable for one year. The relative expanded uncertainty of the preparation consistency, adsorption and long-term stability of this hydrogen sulfide standard gas was less than 1.05 % (95 % of confidence level, k=2).

Simulation and assessment of gas dispersion above sea from a subsea release: A CFD-based approach

  • Li, Xinhong;Chen, Guoming;Zhang, Renren;Zhu, Hongwei;Xu, Changhang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.353-363
    • /
    • 2019
  • This paper presents a comprehensive simulation and assessment of gas dispersion above sea from a subsea release using a Computational Fluid Dynamics (CFD) approach. A 3D CFD model is established to evaluate the behavior of flammable gas above sea, and a jack-up drilling platform is included to illustrate the effect of flammable gas cloud on surface vessels. The simulations include a matrix of scenarios for different surface release rates, distances between surface gas pool and offshore platform, and wind speeds. Based on the established model, the development process of flammable gas cloud above sea is predicted, and the dangerous area generated on offshore platform is assessed. Additionally, the effect of some critical factors on flammable gas dispersion behavior is analyzed. The simulations produce some useful outputs including the detailed parameters of flammable gas cloud and the dangerous area on offshore platform, which are expected to give an educational reference for conducting a prior risk assessment and contingency planning.

Development of an Editor for Reference Data Library Based on ISO 15926 (ISO 15926 기반의 참조 데이터 라이브러리 편집기의 개발)

  • Jeon, Youngjun;Byon, Su-Jin;Mun, Duhwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.390-401
    • /
    • 2014
  • ISO 15926 is an international standard for integration of lifecycle data for process plants including oil and gas facilities. From the viewpoint of information modeling, ISO 15926 Parts 2 provides the general data model that is designed to be used in conjunction with reference data. Reference data are standard instances that represent classes, objects, properties, and templates common to a number of users, process plants, or both. ISO 15926 Parts 4 and 7 provide the initial set of classes, objects, properties and the initial set of templates, respectively. User-defined reference data specific to companies or organizations are defined by inheriting from the initial reference data and the initial set of templates. In order to support the extension of reference data and templates, an editor that provides creation, deletion and modification functions of user-defined reference data is needed. In this study, an editor for reference data based on ISO 15926 was developed. Sample reference data were encoded in OWL (web ontology language) according to the specification of ISO 15926 Part 8. iRINGTools and dot15926Editor were benchmarked for the design of GUI (graphical user interface). Reference data search, creation, modification, and deletion functions were implemented with XML (extensible markup language) DOM (document object model), and SPARQL (SPARQL protocol and RDF query language).