• Title/Summary/Keyword: Reference coordinate

Search Result 286, Processing Time 0.02 seconds

A Gemetric Kinematic Analysis of Constrained Multibody System (구속된 다물체 시스템을 위한 기하학적 운동구속론)

  • 김재용;배대성;한창수;이상호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.80-90
    • /
    • 1994
  • Basic constraint equations derived from orthogonality conditions between a pair of body-fixed vectors and a body-fixed vector or a vector between two bodies are reformulated by using relative coordinate kinematics between two adjacent reference frames. Arithmetic numbers of operations required to compute derivatives of the constraint equations are drastically reduced. A mixed formulation of relative and cartesian coordinates is developed to further simplify derivatives of the constraints. Advantages and disadvantages of the new formulation are discussed. Possible singularity problem of para llelism constraints is resolved by introducing an extra generalized coordinate. Kinematic analysis of a McPherson strut suspension system are carried out to illustrate use and efficiency of the new formulation.

  • PDF

Geocoding of the Free Stereo Mosaic Image Generated from Video Sequences (비디오 프레임 영상으로부터 제작된 자유 입체 모자이크 영상의 실좌표 등록)

  • Noh, Myoung-Jong;Cho, Woo-Sug;Park, Jun-Ku;Kim, Jung-Sub;Koh, Jin-Woo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.3
    • /
    • pp.249-255
    • /
    • 2011
  • The free-stereo mosaics image without GPS/INS and ground control data can be generated by using relative orientation parameters on the 3D model coordinate system. Its origin is located in one reference frame image. A 3D coordinate calculated by conjugate points on the free-stereo mosaic images is represented on the 3D model coordinate system. For determining 3D coordinate on the 3D absolute coordinate system utilizing conjugate points on the free-stereo mosaic images, transformation methodology is required for transforming 3D model coordinate into 3D absolute coordinate. Generally, the 3D similarity transformation is used for transforming each other 3D coordinates. Error of 3D model coordinates used in the free-stereo mosaic images is non-linearly increased according to distance from 3D model coordinate and origin point. For this reason, 3D model coordinates used in the free-stereo mosaic images are difficult to transform into 3D absolute coordinates by using linear transformation. Therefore, methodology for transforming nonlinear 3D model coordinate into 3D absolute coordinate is needed. Also methodology for resampling the free-stereo mosaic image to the geo-stereo mosaic image is needed for overlapping digital map on absolute coordinate and stereo mosaic images. In this paper, we propose a 3D non-linear transformation for converting 3D model coordinate in the free-stereo mosaic image to 3D absolute coordinate, and a 2D non-linear transformation based on 3D non-linear transformation converting the free-stereo mosaic image to the geo-stereo mosaic image.

Position Detection Algorithm for Auto-Landing Containers by Laser-Sensor, Part I: 3-D Measurement (컨테이너의 자동랜딩을 위한 레이저센서 기반의 절대위치 검출 알고리즘: 3차원 측정 (Part I))

  • Hong, Keum-Shik;Lim, Sung-Jin;Hong, Kyung-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.45-54
    • /
    • 2007
  • In the context of auto-landing containers from a container ship to a truck or automatic guided vehicle and vice versa, this research investigates three schemes, one in Part I and two in Part II, for measuring the absolute position of a container. Coordinate transformations between the reference-coordinate, sensor-coordinate, and body-coordinate systems are briefly discussed. The scheme explored in Part I aims the use of three laser-slit sensors, which are relatively inexpensive. In this case, nine nonlinear equations are formulated for six unknown variables (three for orientation and three for position), so a closed-form solution is not available. Instead, an approximate solution through linearization was derived. An advantage of the method in Part I is its ability to measure an absolute position in 3D space, while a disadvantage is the computation time required to obtain pseudo-inverses and the approximate nature of the obtained solution. Numerical examples are provided.

Longitudinal Control of the Lead Vehicle of a Platoon in IVHS using Backstepping Method (Backstepping 방법을 이용한 IVHS에서의 차량군 리드 차량의 종렬제어기 설계)

  • 박종호;정길도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.137-144
    • /
    • 2000
  • In this paper, a longitudinal control of the lead vehicle for a platoon in IVHS Regulation Layer is proposed. The backstepping method has been used for the controller design. This method has an advantage in that its stability need not be proven since the controller is designed based on the Lyapunov Function. The control object is that the lead vehicle tracks a reference velocity and maintains a safe distance between the inter-platoons while the followers are keeping the speed of the lead vehicle of a platoon. The coordinate of system is transformed to a new coordinate system for its convenience to design controller. The new coordinate system is composed of error and new error variable. The error is the difference between the safe distance and the actual distance of inter-platoons. A new error variable is the difference between the velocity of vehicle and the estimated state of a system operated by the virtual input. The Lyapunov function is obtained based on the variables of new coordinate system. In the computer simulation, several cases have been studied such as when the lead vehicle is tracking the optimal speed. or a lead vehicle of the following platoon tracks the velocity of the previous platoon while maintaining a safe distance. Also a nonlinear engine time constant case has been investigated. All the simulation results show that the designed controller satisfies the control object sufficiently.

  • PDF

Coordinate Transformation between Korean Geodetic System and WGS-84 by 7 Parameter Coordinste Transformation Method (7-매개변수 좌표변환에 의한 우리나라 측지계와 WGS-84의 좌표변환)

  • 권대원;윤홍식;최재화
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.117-124
    • /
    • 1995
  • The main purpose of the present study was to investigate coordinate transformation based on two different systems: one was the World Geodetic System 1984(WGS84) adopted as a reference system for GPS satellite surveying;and another was the current Korean geodetic system based on Bessel ellipsoid. For this purpose, three methods were used to determine 7 parameters as follows: Bursa-Wolf model, Molodensky-Badekas model, and Veis model. The coordinate transformation was carried out using simillity transformation applied the obtained 7 parameters and the precision of transformed coordinate was evaluated. From this results, we found that Bursa-wolf model is more suitable than others for the determination of transformation parameters in Korea.

  • PDF

Alignment of Inertial Navigation Sensor and Aircraft Fuselage Using an optical 3D Coordinate Measuring Device (광학식 3차원 좌표측정장치를 이용한 관성항법센서와 기체의 정렬기법)

  • Kim, Jeong-ho;Lee, Dae-woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.41-48
    • /
    • 2019
  • This paper deals with a method of aligning an aircraft fuselage and an inertial navigation sensor using three-dimensional coordinates obtained by an optical method. In order to verify the feasibility, we introduce the method to accurately align the coordinate system of the inertial navigation sensor and the aircraft reference coordinate system. It is verified through simulation that reflects the error level of the measuring device. In addition, optimization method based alignment algorithm is proposed for connection between optical sensor and inertial navigation sensor.

A Comparative Analysis of 3D Circle Fitting Algorithms for Determination of VLBI Antenna Reference Point (VLBI 안테나 기준점 결정을 위한 3D Circle Fitting 알고리즘의 비교 분석)

  • Hyuk Gil, Kim;Jin Sang, Hwang;Hong Sik, Yun;Tae Jun, Jeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.231-244
    • /
    • 2015
  • The accuracy of reference point of VLBI antenna is mandatory to perform collocation of different space geodetic techniques. In this study, we evaluated the optimal methods for the 3D circle fitting to enhance the accuracy of the reference point of VLBI antenna. Two kinds of methodologies for the orthonormal coordinate system with translation of planar observation point and the unitary coordinate transforamation were suggested and their fitting accuracies were evaluated where the orthogonal distance was calculated by residual between observation point and fitting model and the recursive calculation was performed to improve the accuracy of 3D circle fitting. Finally, we found that the methodology for the unitary coordinate transformation is highly appropriate to determine the optimal equation for azimuth-axis and elevation-axis of VLBI antenna. Therefore, the reference point of VLBI antenna with high accuracy can be determined by the intersection of the above two axises (azimuth-axis and elevation-axis). This result is expected to be utilized for a variety of researches for connection between VLBI observation results and the national control point.

Formulation of a reference coordinate system of three-dimensional head & neck images: Part II. Reproducibility of the horizontal reference plane and midsagittal plane (3차원 두부영상의 기준좌표계 설정을 위한 연구: II부 수평기준면과 정중시상면의 재현성)

  • Park, Jae-Woo;Kim, Nam-Kug;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.35 no.6 s.113
    • /
    • pp.475-484
    • /
    • 2005
  • This study was performed to investigate the reproducibility of the horizontal and midsagittal planes, and to suggest a stable coordinate system for three-dimensional (3D) cephalometric analysis. Eighteen CT scans were taken and the coordinate system was established using 7 reference points marked by a volume model, with no more than 4 points on the same plane. The 3D landmarks were selected on V works (Cybermed Inc., Seoul, Korea), then exported to V surgery (Cybermed Inc., Seoul, Korea) to calculate the coordinate values. All the landmarks were taken twice with a lapse of 2 weeks. The horizontal and midsagittal planes were constructed and its reproducibility was evaluated. There was no significant difference in the reproducibility of the horizontal reference planes, But, FH planes were more reproducible than other horizontal planes. FH planes showed no difference between the planes constructed with 3 out of 4 points. The angle of intersection made by 2 FH planes, composed of both Po and one Or showed less than $1^{\circ}$ difference. This was identical when 2 FH planes were composed of both Or and one Po. But, the latter cases showed a significantly smaller error. The reproducibility of the midsagittal plane was reliable with an error range of 0.61 to $1.93^{\circ}$ except for 5 establishments (FMS-Nc, Na-Rh, Na-ANS, Rh-ANS, and FR-PNS). The 3D coordinate system may be constructed with 3 planes; the horizontal plane constructed by both Po and right Or; the midsagittal plane perpendicular to the horizontal plane, including the midpoint of the Foramen Spinosum and Nc; and the coronal plane perpendicular to the horizontal and midsagittal planes, including point clinoidale, or sella, or PNS.

Fast Extraction of Symmetrical Components from Distorted Three-Phase Signals Based on Asynchronous-Rotational Reference Frame

  • Hao, Tianqu;Gao, Feng;Xu, Tao
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.1045-1053
    • /
    • 2019
  • A symmetrical component decomposition scheme utilizing the characteristics of the asynchronous rotational reference frame transformation is proposed in this paper for the extraction of the positive and negative sequence components of distorted three-phase grid voltages. The undesired frequency component can be removed using a specially designed series coordinate transformation and half-cycle delays, where the delay can be controlled by adjusting the frequency of the rotating reference frame. The extracted symmetrical component can then be compensated based on the applied coordinated transformation. The dynamic response of the proposed algorithm is improved when compared to that of conventional methods. The effectiveness of the proposed algorithm is verified by simulation and experimental results.