• Title/Summary/Keyword: Reference Station and Integrity Monitor

Search Result 16, Processing Time 0.023 seconds

Design of Integrity Monitor Functions for Maritime DGPS RSIM (해양용 DGPS 기준국의 무결성 감시 기능 설계)

  • Seo, Ki-Yeol;Park, Sang-Hyun;Cho, Deuk-Jae;Suh, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.395-400
    • /
    • 2009
  • In order to prepare for the DGNSS recapitalization and implementation of the functions for software based reference station and integrity monitor (RSIM) system, this paper proposes a design of integrity monitor functions of maritime differential GPS RSIM. The most critical functions of the integrity monitor (IM) are to generate and send flags to the reference station (RS) along with system feedback. Firstly, it presents the architecture of software based RSIM, and analyzes the performance standard of integrity monitor for maritime DGPS reference station This paper then designs the functions of integrity monitor for DGPS reference station based on the performance standard. Finally, this paper presents the results of performance analysis for the functionality of integrity monitor using the GNSS simulator. it discusses the study method and its application for the system implementation.

A Maritime DGPS Reference Station Configuration Proposal for Operation Improvement

  • Choi, Yong Kwon;Son, Seok Bo;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.4
    • /
    • pp.187-193
    • /
    • 2015
  • A maritime Differential Global Positioning System (DGPS) reference station broadcasts correction information to users having a DGPS receiver so that the navigation performance can be improved. A maritime DGPS reference station consists of a reference station (RS) that generates and broadcasts correction information, an integrity monitor (IM) that monitors the integrity of correction information, and a control station (CS) that controls them. A maritime DGPS reference station is continuously operated for 24 hours, and thus improvement in the ease of operation is a major element that can improve the performance of the system. In this study, a configuration of a maritime DGPS reference station that can improve the ease of operation and a relevant protocol were proposed, and an example of the implementation of the proposed system was presented.

A Warning Threshold Proposal for Operation Improvement of Maritime DGPS Reference Station (해양용 DGPS 운영성 개선을 위한 시스템 경고 임계값 제안)

  • Choi, Yong Kwon;Lee, Ju Hyun;Son, Seok Bo;Lee, Sang Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.12-20
    • /
    • 2017
  • A maritime DGPS in Korea offers pseudo-range correction information and monitors integrity of correction data by using multiple GNSS receivers. The maritime DGPS reference station and integrity monitor service sets alarm threshold value about integrity monitoring parameters for preventing service interruption status. However there is no way to avoid system interruption according to malfunction of backup systems and outside factors. Therefore, in this paper, warning threshold values were proposed for maritime DGPS operator can be counteract in advance. And Markov analysis method was carried out for selection of these warning threshold values.

Method for Detection and Identification of Satellite Anomaly Based on Pseudorange (의사거리 기반 위성 이상 검출 및 식별 기법)

  • Seo, Ki-Yeol;Park, Sang-Hyun;Jang, Won-Seok;Kim, Young-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.328-333
    • /
    • 2012
  • Current differential GPS (DGPS) system consists of reference station (RS), integrity monitor (IM), and control station (CS). The RS computes the pseudorange corrections (PRC) and generates the RTCM messages for broadcasting. The IM receives the corrections from the RS broadcasting and verifies that the information is within tolerance. The CS performs realtime system status monitoring and control of the functional and performance parameters. The primary function of a DGPS integrity monitor is to verify the correction information and transmit feedback messages to the reference station. However, the current algorithms for integrity monitoring have the limitations of integrity monitor functions for satellite outage or anomalies. Therefore, this paper focuses on the detection and identification methods of satellite anomalies for maritime DGPS RSIM. Based on the function analysis of current DGPS RSIM, it first addresses the limitation of integrity monitoring functions for DGPS RSIM, and then proposes the detection and identification method of satellite anomalies. In addition, it simulates an actual GPS clock anomaly case using a GPS simulator to analyze the limitations of the integrity monitoring function. It presents the brief test results using the proposed methods for detection and identification of satellite anomalies.

Software Architecture Degisn for Integrated Maritime DGPS Reference Station & Integrity Monitor (해양 DGPS 기준국과 감시국 소프트웨어의 통합을 위한 아키텍처 설계)

  • Jang, Won-Seok;Seo, Ki-Yeol;Kim, YoungKi
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.427-429
    • /
    • 2013
  • DGPS Reference Station the national infrastructure generates the DGPS correction information for Differential GPS. Currently, South Korea operates the software based DGPS reference station using the next generation DGPS architecture in order that upgrade the hardware based DGPS reference station. However the software based DGPS reference station proposed by USCG has not changed just a form of its structure but intimate architecture. Accordingly, It can't strengthen the advantages of software based architecture. In this paper, I will propose a new software architecture design that is integrated with DGPS reference station and integrity monitor. This architecture is more simple than existing one so can use the maritime DGPS reference station which is required more simple structure.

  • PDF

Architecture Design for Integration of Software RS and IM of Maritime DGPS Reference Station System (해양 DGPS 기준국 시스템의 소프트웨어 RS,IM 통합을 위한 아키텍처 설계)

  • Jang, Wonseok;Kim, Youngki;Seo, Kiyeol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.282-288
    • /
    • 2014
  • The DGPS reference station is a national infrastructure generating GPS correctional information and transmitting the signal for Differential GPS. Currently, Korea has applied and operated the software-based DGPS reference station as a standard of the next generation proposed by the USCG in order to improve the hardware-based DGPS reference system. However, software-based DGPS reference station proposed by USCG was changed in software method, only for form. There is no advantage to changing software-based because the most critical part of architecture has not been improved. In this paper, we have designed a new software-based marine DGPS station architecture that a reference station software and a monitor station were integrated. The new marine DGPS station architecture based on software is a more simplified structure than it used to be and can be utilized in the DGPS reference station.

Design of Network-based AIS Reference Station System (네트워크 기반 AIS 기준국 시스템 설계)

  • Seo, Ki-Yeol;Park, Sang-Hyun;Jeong, Ho-Cheol;Cho, Deuk-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.824-830
    • /
    • 2010
  • In order to prepare for increasing performance requirement for Differential Global Navigation Satellite System (DGNSS) services of International Maritime Organization (IMO) and International Association of Lighthouse Authorities (IALA), this paper focuses on design of network-based Automatic Identification System (AIS) reference station system that can perform the functionality of Differential Global Positioning System (DGPS) reference station in an AIS base station system. AIS base station receives the differential corrections from the DGPS reference station, and it is not a method for transmitting the received differential corrections to onboard AIS units, but it is a method for generating the optimized differential corrections for onboard AIS units in AIS coverage. Therefore this paper proposes an algorithm for generating the differential corrections at AIS reference station, and performs the performance assessment of the proposed algorithm based on DGPS correction data measured from a DGPS reference station. Finally this paper discusses the test results and efficiency of the proposed system.

Method of Differential Corrections Using GPS/Galileo Pseudorange Measurement for DGNSS RSIM (DGNSS RSIM을 위한 GPS/Galileo 의사거리 보정기법)

  • Seo, Ki-Yeol;Kim, Young-Ki;Jang, Won-Seok;Park, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.373-378
    • /
    • 2014
  • In order to prepare for recapitalization of differential GNSS (DGNSS) reference station and integrity monitor (RSIM) due to GNSS diversification, this paper focuses on differential correction algorithm using GPS/Galileo pesudorange. The technical standards on operation and broadcast of DGNSS RSIM are described as operation of differential GPS (DGPS) RSIM for conversion of DGNSS RSIM. Usually, in order to get the differential corrections of GNSS pesudorange, the system must know the real positions of satellites and user. Therefore, for calculating the position of Galileo satellites correctly, using the equation for calculating the SV position in Galileo ICD (Interface Control Document), it estimates the SV position based on Ephemeris data obtained from user receiver, and calculates the clock offset of satellite and user receiver, system time offset between GPS and Galileo, then determines the pseudorange corrections of GPS/Galileo. Based on a platform for performance verification connected with GPS/Galileo integrated signal simulator, it compared the PRC (pseudorange correction) errors of GPS and Galileo, analyzed the position errors of DGPS, DGalileo, and DGPS/DGalileo respectively. The proposed method was evaluated according to PRC errors and position accuracy at the simulation platform. When using the DGPS/DGalileo corrections, this paper could confirm that the results met the performance requirements of the RTCM.

Charisma: Trimble's Modernized Differential GPS Reference Station and Integrity Monitor Software

  • Remondi, Benjamin W.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.221-226
    • /
    • 2006
  • Around 2002, the United States Coast Guard (USCG) identified a need to re-capitalize their Reference Station (RS) and Integrity Monitor (IM) equipment used in the Nationwide Differential Global Position System (NDGPS). Commercially available off-the-shelf differential RS and IM equipment lacked the open architecture required to support long-term goals that include future system improvements such as use of new civil frequencies on L2 and L5 and realization of a higher rate NDGPS beacon data channel intended to support RTK. The first step in preparing for this future NDGPS was to port current RTCM SC-104 compatible RS and IM functionality onto an open architecture PC-based platform. Trimble's product Charisma is a PC-based RS and IM software designed to meet these USCG goals. In fact USCG engineers provided key designs and design insights throughout the development. We cannot overstate the contribution of the USCG engineers. Fundamental requirements for this effort were that it be sufficiently flexible in hardware and software design to support fluid growth and exploitation of new signals and technologies as they become available, yet remain backward compatible with legacy user receivers and existing site hardware and system architecture. These fundamental goals placed an implicit adaptability requirement on the design of the replacement RS and IM. Additionally, project engineers were to remain focused on sustaining the high level of differential GPS service that 1.5 million legacy users have come to depend on. This paper will present new hardware and software (i.e., Trimble's Charisma software) architecture for the next generation NDGPS RS and IM. This innovative approach to engineering on an open architecture PC-based platform allows the system to continue to fulfill legacy NDGPS system requirements and allows the USCG and others to pursue a scalable hardware re-capitalization strategy. We will use the USCG's recapitalization project to explain the essential role of the Charisma software.

  • PDF

Development of Real-time Mission Monitoring for the Korea Augmentation Satellite System

  • Daehee, Won;Koontack, Kim;Eunsung, Lee;Jungja, Kim;Youngjae, Song
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.23-35
    • /
    • 2023
  • Korea Augmentation Satellite System (KASS) is a satellite-based augmentation system (SBAS) that provides approach procedure with vertical guidance-I (APV-I) level corrections and integrity information to Korea territory. KASS is used to monitor navigation performance in real-time, and this paper introduces the design, implementation, and verification process of mission monitoring (MIMO) in KASS. MIMO was developed in compliance with the Minimum Operational Performance Standards of the Radio Technical Commission for Aeronautics for Global Positioning System (GPS)/SBAS airborne equipment. In this study, the MIMO system was verified by comparing and analyzing the outputs of reference tools. Additionally, the definition and derivation method of accuracy, integrity, continuity, and availability subject to MIMO were examined. The internal and external interfaces and functions were then designed and implemented. The GPS data pre-processing was minimized during the implementation to evaluate the navigation performance experienced by general users. Subsequently, tests and verification methods were used to compare the obtained results based on reference tools. The test was performed using the KASS dataset, which included GPS and SBAS observations. The decoding performance of the developed MIMO was identical to that of the reference tools. Additionally, the navigation performance was verified by confirming the similarity in trends. As MIMO is a component of KASS used for real-time monitoring of the navigation performance of SBAS, the KASS operator can identify whether an abnormality exists in the navigation performance in real-time. Moreover, the preliminary identification of the abnormal point during the post-processing of data can improve operational efficiency.