• Title/Summary/Keyword: Reference Control Scheme

Search Result 522, Processing Time 0.024 seconds

The pressure control of SR Drive for Hydraulic Oil-pump with Data based PID Control (실험 데이터 기반의 PID 제어기를 적용한 유압펌프용 SRM의 압력제어)

  • Seok, Seung-Hun;Kim, Tae-Hyoung;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.160-162
    • /
    • 2008
  • This paper presents the practical pressure control of hydraulic oil-pump system using SR drive for industrial application. In order to get a high performance of pressure dynamics in actual application, a data based PID control scheme is proposed in this paper. The look-up table from pre-measured data produces an approximately proper current reference according to motor speed and oil-pressure. And, PID controller can compensate the pressure error. With the combination of two references, the proposed control scheme can get a fast dynamics and stable operation. Furthermore, the suitable current controller considering the nonlinear characteristics of SRM(Switched Reluctance Motor) and practical test method for data measuring are introduced. The proposed control scheme is verified by the experimental test.

  • PDF

Auto-Tuning Of Reference Model Based PID Controller Using Immune Algorithm

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.102.5-102
    • /
    • 2002
  • In this paper auto-tuning scheme of PID controller based on the reference model has been studied by immune algorithm for a process. Up to this time, many sophisticated tuning algorithms have been tried in order to improve the PID controller performance under such difficult conditions. However, in the actual plant, they are manually tuned through a trial and error procedure, and the derivative action is switched off. Therefore, it is difficult to tune. Simulation results by immune based tuning reveal that tuning approaches suggested in this paper is an effective approach to search for optimal or near optimal process control.

  • PDF

Extention of Model Reference Adaptive Control With Objective Function (목적함수를 사용한 적응제어의 확장)

  • Park, Chong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.2
    • /
    • pp.56-61
    • /
    • 1984
  • The problem of model reference adaptive control for the discrete time system is considered and the global stability of the overall system is shown. It extends the results of Choi's to the plants and models whose transfer functions have arbitrary gains and the method presented here makes the output error and the conftroller parameter error converge to zero. The scheme presented in this paper is simulated and gives good results.

  • PDF

An Adoptive Current Control Scheme of an AC Servo Motor for Performance Improvement of a Servo Drive (서보 드라이브 성능 향상을 위한 AC 서보 전동기의 적응형 전류 제어)

  • Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.6
    • /
    • pp.96-103
    • /
    • 2006
  • An MRAC-based adaptive current control scheme of an AC servo motor is presented for the performance improvement of a servo drive. Although the predictive current control is known to give ideal transient and steady-state responses, its steady-state response my be degraded under motor parameter variations. To overcome such a limitation, the disturbances caused by the parameter variations will be estimated by using an MRAC technique and compensated by a feedforward control. The proposed scheme does not require the measurement of the phase voltage unlike the conventional disturbance estimation scheme using observer. The asymptotic stability is proved. The proposed scheme is implemented using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

Neutral-Point Voltage Balancing Control Scheme for Fault-Tolerant Operation of 3-Level ANPC Inverter (3-레벨 ANPC 인버터의 고장 허용 운전 시 중성점 전압 균형 제어 기법)

  • Lee, Jae-Woon;Kim, Ji-Won;Park, Byoung-Gun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.120-126
    • /
    • 2019
  • This study proposes a neutral voltage balance control scheme for stable fault-tolerant operation of an active neutral point clamped (ANPC) inverter using carrier-based pulse width modulation. The proposed scheme maintains the neutral voltage balance by reconfiguring the switching combination and modulating the reference output voltage in order to solve the degradation of the output characteristic in the fault tolerant operation due to the fault of the power semiconductor switch constituting the ANPC inverter. The feasibility of the proposed control scheme is confirmed by HIL experiment using RT-BOX.

Neural Network Based PID Control for Pneumatic NC Axes (공압 NC축의 신경회로망 결합형 PID 제어)

  • Park, Lae-Seo;Cho, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.105-111
    • /
    • 2006
  • This paper describes a Neural Network based PID control scheme for pneumatic NC axes. Pneumatic systems have inherent nonlinearities such as compressibility of air and nonlinear frictions present in cylinder. The conventional PID controller is limited in some applications where the affection of nonlinear factor is dominant. A self-excited oscillation method is applied to derive the dynamic design parameters of linear model. The gains of PID controller are determined using a self tuning scheme. The experiments of a trajectory tracking control using the proposed control scheme are performed and a significant reduction in tracking error is achieved by comparing with those of a PID control.

An Effective Control Scheme for Battery Charger System in Electric Vehicles

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.232-233
    • /
    • 2012
  • This paper presents an effective control scheme for an electric vehicle battery charger where a symmetrical bridgeless power factor-corrected converter and a buck converter are cascaded. Both converters have been popular in industries because of their high efficiency, low cost, and compact size, hence combining these converters makes the overall battery charging system strongly efficient. Moreover, this charger topology can operate at universal input voltage and attain a desired battery current and voltage without ripple. In order to achieve a unity input power factor and zero input current harmonic distortion, the proposed control scheme adopts duty ratio feed-forward control technique in both current and voltage control loop. Additionally, in the current loop, its reference is created by a phase-locked loop (PLL) block, leading to a pure sinusoidal input current although the input voltage waveform is being distorted. The feasibility and practical value of the proposed approach are verified by simulation and experiment with an 110V/60Hz ac line input and 1.5kW-72V dc output of the battery charging system.

  • PDF

An Adaptive Iterative Learning Control and Identification for Uncertain Robotic Systems (불확실한 로봇 시스템을 위한 적응 반복 학습 제어 및 식별)

  • 최준영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.395-401
    • /
    • 2004
  • We present an AILC(Adaptive Iterative Learning Control) scheme and a sufficient condition for system parameter identification for uncertain robotic systems that perform the same tasks repetitively. It is guaranteed that the joint velocity and position asymptotically converge to the reference joint velocity and position, respectively. In addition, it is proved that a sufficient condition for parameter identification is the PE(Persistent Excitation) condition on the regressor matrix evaluated at the reference trajectory during the operation period. Since the regressor matrix on the reference trajectory can be easily computed prior to the real robot operation, the proposed algorithm provides a useful method to verify whether the parameter error converges to zero or not.

Stable Haptic Interaction with Reference Energy Following Scheme (에너지 추종방법을 이용한 안정적 햅틱 상호작용)

  • Ryu Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.277-283
    • /
    • 2006
  • A recently proposed method for stabilizing haptic interfaces and teleoperation systems was tested with a 'PHANToM' commercial haptic device. The 'Passivity Observer' (PO) and 'Passivity Control1er' (PC) stabilization method was applied to stabilize the system but also excited a high frequency mode in the device. To solve this problem, we propose a method to use a timevarying desired energy threshold instead of fixed zero energy threshold for the PO, and make the actual energy input follow the timevarying energy threshold. With the time-varying energy threshold, we make the PC control action smooth without sudden impulsive behavior by distributing the dissipation. The proposed new PO/PC approach is applied to PHANToM with high stiffness (K = 5000N/m), and stable and smooth contact is guaranteed. Resetting and active environment display problems also can be solved with the reference energy following idea.

On Decentralized Aadaptive Controller Design

  • Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.140-145
    • /
    • 1992
  • This paper presents a decentralized model reference adaptive control scheme for an interconnected linear system composed of a number of single-input single-output subsystems in which outgoing interactions pass through the measurement channel and are subjected to bounded external disturbances. The scheme can treat the unknown strength of interactions as well as uncertainties in subsystem dynamics, and allows for the case when the relative degree of each decoupled subsystem does not exceed two.

  • PDF