• 제목/요약/키워드: Reference Beam

검색결과 516건 처리시간 0.022초

EDISON Co-rotational Plane Beam-Transient anlaysis를 이용한 Energy method방법의 충격량해석 및 타격중심 매개변수 연구

  • 김상혁;이상구;신상준
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제6회(2017년)
    • /
    • pp.194-203
    • /
    • 2017
  • The center of percussion(COP) is the point of an extended massive object attached to a pivot where a perpendicular impact will produce no reactive shock at the pivot. COP is an important concept in the field of vibration and dynamics. In vibration, COP causes reduction of vibration and in dynamics, it brings about maximum speed of an object. Many studies about COP are still in progress. However most of the researches have typically focused on the method of mathematical and numerical anlalysis. In this paper, impact analysis was proved by the mechanical energy method using EDISON co-rotational plane beam transient analysis program. The result expressed in acceleration was the relative magnitude of the impulse, which was the indicator of COP. Then, these results were compared with the reference thesis results for exact consequences. Additionally, parametric study of COP was conducted.

  • PDF

A novel classification of anterior alveolar arch forms and alveolar bone thickness: A cone-beam computed tomography study

  • Bulyalert, Atcharee;Pimkhaokham, Atiphan
    • Imaging Science in Dentistry
    • /
    • 제48권3호
    • /
    • pp.191-199
    • /
    • 2018
  • Purpose: This study classified alveolar arch forms and evaluated differences in alveolar bone thickness among arch forms in the anterior esthetic region using cone-beam computed tomography (CBCT) images. Materials and Methods: Axial views of 113 CBCT images were assessed at the level of 3 mm below the cementoenamel junction (CEJ) of the right and left canines. The root center points of teeth in the anterior esthetic region were used as reference points. Arch forms were classified according to their transverse dimensions and the intercanine width-to-depth ratio. The buccolingual alveolar bone thickness of each tooth was measured at 3 mm below the CEJ and at the mid-root level. Differences in the mean thicknesses among arch forms were analyzed. Results: Anterior maxillary arches could be classified as long narrow, short medium, long medium, and long wide arches. Significant differences in buccolingual alveolar bone thickness among the arch groups were found at both levels. The long wide arches presented the greatest bone thickness, followed by the long medium arches, while the long narrow and short medium arches were the thinnest. Conclusion: Arch forms were classified as long narrow, short medium, long medium, and long wide. The buccolingual alveolar bone thickness exhibited significant differences among the arch forms.

레이저 도플러 진동계를 이용한 진동변위와 주파수 측정방법 연구 (A Study on the method for the measurement of vibrating amplitude and frequency with Laser Doppler Vibrometer)

  • 김성훈;김호성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 E
    • /
    • pp.1824-1827
    • /
    • 1998
  • A Laser Doppler Vibrometer(LDV) was developed using He-Ne laser as a light source. The heterodyne method was employed and its output signal was digitally processed with a $\mu$-processor and the result was displayed with LCD. The frequency shifted object beam(40 MHz) by a Bragg cell was focused on the surface of the moving target and the Doppler shifted reflected beam was recombined with reference beam at the fast photodetector to produce frequency modulated signal centered at 40 MHz. The signal from the detector was amplified and downconverted to intermediate frequency centered at 1 MHz after mixing process. The voltage output that was proportional to the velocity of the moving surface was obtained using PLL. With the same method, the fringe pattern signal of the moving surface is obtained. This fringe pattern signal is converted to TTL signal with ZCD(zero-crossing detector) and then counted to calculate the displacement due to the vibration, which is displayed with LCD. This LDV can be used to measure the resonant frequency of the electric equipments such as circuit breakers and transformers, of which resonant frequencies are changed when they are damaged.

  • PDF

Vision-based multipoint measurement systems for structural in-plane and out-of-plane movements including twisting rotation

  • Lee, Jong-Han;Jung, Chi-Young;Choi, Eunsoo;Cheung, Jin-Hwan
    • Smart Structures and Systems
    • /
    • 제20권5호
    • /
    • pp.563-572
    • /
    • 2017
  • The safety of structures is closely associated with the structural out-of-plane behavior. In particular, long and slender beam structures have been increasingly used in the design and construction. Therefore, an evaluation of the lateral and torsional behavior of a structure is important for the safety of the structure during construction as well as under service conditions. The current contact measurement method using displacement meters cannot measure independent movements directly and also requires caution when installing the displacement meters. Therefore, in this study, a vision-based system was used to measure the in-plane and out-of-plane displacements of a structure. The image processing algorithm was based on reference objects, including multiple targets in Lab color space. The captured targets were synchronized using a load indicator connected wirelessly to a data logger system in the server. A laboratory beam test was carried out to compare the displacements and rotation obtained from the proposed vision-based measurement system with those from the current measurement method using string potentiometers. The test results showed that the proposed vision-based measurement system could be applied successfully and easily to evaluating both the in-plane and out-of-plane movements of a beam including twisting rotation.

멀티빔(MBES)의 오차보정에 관한 연구 (Establishment Error Calibration Method on MBES)

  • 노정식;최윤수;윤하수;이유정
    • Spatial Information Research
    • /
    • 제17권3호
    • /
    • pp.351-359
    • /
    • 2009
  • 최근 수심측량 기술은 단일빔음향측심기에서 발달된 다중빔음향측심기가 일반화되면서 우리나라에 인접한 바다와 내륙에 형성된 하천 지역에 대한 정확한 수심측량 및 지형조사에 다중빔음향측심기가 사용되고 있다. 본 연구에서는 현재 널리 사용되고 있는 다중빔음향측심기의 정확도를 검증하고 정확도를 향상시킬 수 있는 검증방법을 수립하기 위해, 외력(파도, 조류 조석)에 의한 영향이 상대적으로 작은 하천지역에서 취득된 데이터의 정확도 분석을 실시하였다. 동일한 위치에서 토탈스테이션과 수위계를 이용하여 취득된 자료를 통해 정확도를 검증한 후 IHO의 허용오차 기준에 부합되는 지 여부를 판단하였다. 분석결과, 수심이 깊을수록 다중빔음향측심기의 측심 오차가 미세하게 증대되는 것으로 나타났으나, IHO 허용오차를 기준으로 특급 성과의 획득은 가능한 것으로 판단된다.

  • PDF

Influence of MBE Growth Temperature on the Sulfur Compositional Variation Of ZnSSe Epitaxial Layers on GaAs Substrates

  • Kim, Dong-Lyeul;Bae, In-Ho;Son, Jeong-Sik;Kim, In-Su;Lee, Jae-Young m;Akira Yoshida
    • Transactions on Electrical and Electronic Materials
    • /
    • 제1권3호
    • /
    • pp.18-22
    • /
    • 2000
  • In this work, we reported the sulfur compositional variation of ZnS$\_$x/Se$\_$1-x/ epitaxial layers with growth temperature and BEP ration of ZnX/Se/)P$\_$ZnS//P$\_$Se/) grown on GaAs substrates by molecular beam epitaxy. The sulfur composition of ZnSSe epitaxial layers was varied sensitively on the growth temperature and show different linear relationship with growth temperature and BEP ration of ZnS/Se(P$\_$ZnS//P$\_$Se/), which revealed -0.107 %$\^{C}$ at (P$\_$ZnS//P$\_$Se/)=0.30 and -0.052 %$\^{C}$ at (P$\_$ZnS//P$\_$Se/)=0.158 rspectively. A reference data for the accurate control of the sulfur composition and the growth of high quality ZnSSe/GaAs epitaxial layers was provided.

  • PDF

Numerical simulation of concrete beams reinforced with composite GFRP-Steel bars under three points bending

  • Elamary, Ahmed S.;Abd-ELwahab, Rafik K.
    • Structural Engineering and Mechanics
    • /
    • 제57권5호
    • /
    • pp.937-949
    • /
    • 2016
  • Fiber reinforced polymer (FRP) applications in the structural engineering field include concrete-FRP composite systems, where FRP components are either attached to or embedded into concrete structures to improve their structural performance. This paper presents the results of an analytical study conducted using finite element model (FEM) to simulate the behavior of three-points load beam reinforced with GFRP and/or steel bars. To calibrate the FEM, a small-scale experimental program was carried out using six reinforced concrete beams with $200{\times}200mm$ cross section and 1000 mm length cast and tested under three point bending load. The six beams were divided into three groups, each group contained two beams. The first group was a reference beams which was cast without any reinforcement, the second group concrete beams was reinforced using GFRP, and the third group concrete beams was reinforced with steel bars. Nonlinear finite element simulations were executed using ANSYS software package. The difference between the theoretical and experimental results of beams vertical deflection and beams crack shapes were within acceptable degree of accuracy. Parametric study using the calibrated model was carried out to evaluate two parameters (1) effect of number and position of longitudinal main bars on beam behavior; (2) performance of concrete beam with composite longitudinal reinforcement steel and GFRP bars.

Damage evaluation of RC beams strengthened with hybrid fibers

  • Sridhar, Radhika;Prasad, Ravi
    • Advances in concrete construction
    • /
    • 제8권1호
    • /
    • pp.9-19
    • /
    • 2019
  • This paper describes an experimental investigation on hybrid fiber reinforced concrete (HYFRC) beams. And the main aim of this present paper is to examine the dynamic characteristics and damage evaluation of undamaged and damaged HYFRC beams under free-free constraints. In this experimental work, totally four RC beams were cast and analyzed in order to evaluate the dynamic behavior as well as static load behavior of HYFRCs. Hybrid fiber reinforced concrete beams have been cast by incorporating two different fibers such as steel and polypropylene (PP). Damage of HYFRC beams was obtained by cracking of concrete for one of the beams in each set under four-point bending tests with different percentage variation of damage levels as 50%, 70% and 90% of maximum ultimate load. And the main dynamic characteristics such as damping, fundamental natural frequencies, mode shapes and frequency response function at each and every damage level has been assessed by means of non-destructive technique (NDT) with hammer excitation. The fundamental natural frequency and damping values obtained through dynamic tests for HYFRC beams were compared with control (reference) RC beam at each level of damage which has been acquired through static tests. The static experimental test results emphasize that the HYFRC beam has attained higher ultimate load as compared with control reinforced concrete beam.

Soft Tissue Measurement Method Using Radiopaque Material on Cone-beam Computed Tomography: An Ex Vivo Validation Study

  • Lee, Hae-Seok;Yun, Jeong-Ho;Lee, Dong-Won
    • 대한구강악안면임플란트학회지
    • /
    • 제22권4호
    • /
    • pp.210-218
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the validity and reproducibility of a method based on cone-beam computed tomography (CBCT) technology for the visualization and measurement of gingival soft-tissue dimensions. Material and Methods: A total of 66 selected points in soft-tissue of the ex vivo head of an adult pig were investigated in this study. For the measurement of radiographic thickness (RT), wet soft-tissue surfaces were lightly covered with barium sulfate powder using a powder spray. CBCT was taken and DICOM files were assessed for soft-tissue thickness measurement at reference points. A periodontal probe and a rubber stop were used for the measurement of trans-gingival probing thickness (TPT). After flap elevation, actual thickness of soft-tissue (actual thickness, AT) was measured. Correlation analysis and intraclass correlation coefficients analysis (ICC) were performed for AT, TPT, and RT. Results: All variables were distributed normally. Strong significant correlations of AT with RT and TPT values were found. The two ICC values between TPT vs. AT and RT vs. AT differed significantly. Conclusion: Our results indicated that correlation of RT was stronger than that of TPT with AT. We concluded that soft tissue measurement with CBCT could be a reliable method, compared to the trans-gingival probing measurement method.

Material Property-Estimate Technique Based on Natural Frequency for Updating Finite Element Model of Orthotropic Beams

  • Kim, Kookhyun;Park, Sungju;Lee, Sangjoong;Hwang, Seongjun;Kim, Sumin;Lee, Yonghee
    • 한국해양공학회지
    • /
    • 제34권6호
    • /
    • pp.481-488
    • /
    • 2020
  • Composite materialsuch as glass-fiber reinforced plastic and carbon-fiber reinforced plastic (CFRP) shows anisotropic property and have been widely used for structural members and outfitings of ships. The structural safety of composite structures has been generally evaluated via finite element analysis. This paper presents a technique for updating the finite element model of anisotropic beams or plates via natural frequencies. The finite element model updates involved a compensation process of anisotropic material properties, such as the elastic and shear moduli of orthotropic structural members. The technique adopted was based on a discrete genetic algorithm, which is an optimization technique. The cost function was adopted to assess the optimization problem, which consisted of the calculated and referenced low-order natural frequencies for the target structure. The optimization process was implemented with MATLAB, which includes the finite element updates and the corresponding natural frequency calculations with MSC/NASTRAN. Material properties of a virtual cantilevered orthotropic beam were estimated to verify the presented method and the results obtained were compared with the reference values. Furthermore, the technique was applied to a cantilevered CFRP beam to successfully estimate the unknown material properties.