• Title/Summary/Keyword: Reference Beam

Search Result 514, Processing Time 0.022 seconds

Optimal Design of Overlapped Ultrasonic Sensor Ring for High Resolution Obstacle Detection (고분해능 장애물 탐지를 위한 중첩 초음파 센서 링의 최적 설계)

  • Kim, Sung-Bok;Kim, Hyun-Bin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.79-87
    • /
    • 2011
  • This paper presents the optimal design of an overlapped ultrasonic sensor ring for high resolution obstacle detection of an autonomous mobile robot. It is assumed that a set of low directivity ultrasonic sensors of the same type are arranged along a circle of nonzero radius at a regular spacing with their beams overlapped. First, taking into account the dead angle region, the entire range of obstacle detection is determined with reference to the center of an overlapped ultrasonic sensor ring. Second, the optimal design index of an overlapped ultrasonic sensor ring is defined as the area closeness of three sensing subzones resulting from beam overlap. Third, the lower and upper bounds on the number of ultrasonic sensors are derived, which can guarantee minimal beam overlap and also avoid excessive beam overlap among adjacent ultrasonic sensors. Fourth, employing a commercial low directivity ultrasonic sensor, an optimal design example of an overlapped ultrasonic sensor ring is given along with the ultrasonic sensor ring prototype mounted on top of a mobile robot. Finally, some experimental results using our prototype ultrasonic sensor ring are given to demonstrate the validity and performance of an optimally overlapped ultrasonic sensor ring for high resolution obstacle detection.

Study on the Fabrication and Evaluation of the MEMS Based Curved Beam Air Flowmeter for the Vehicle Applications (MEMS 기반의 차량용 휨형 유속센서의 제작 및 특성 연구)

  • Park, Cheol Min;Choi, Dae Keun;Lee, Sang Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.116-123
    • /
    • 2016
  • This paper presents the fabrication and evaluation of the novel drag force type air flowmeter using MEMS technologies for the vehicle applications. To obtain the air drag force, the flowmeter utilized the curved beam structure, which was realized by the difference of residual stress between the silicon oxide layer and the silicon nitride layer. The paddle structure was applied for the maximum air drag force, and the dual-beam was adapted to prevent distortion. The basic experiments were performed in the wind tunnel, and the stable outputs were obtained. The device was applied to the internal combustion engine, and the results were compared with the HI-DS output where the convection thermal flowmeter was used as the reference sensor. The results indicated that the comparable resolutions and response times were obtained under the various engine speeds.

Dynamic numerical analysis of single-support modular bridge expansion joints

  • Yuan, Xinzhe;Li, Ruiqi;Wang, Jian'guo;Yuan, Wancheng
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • Severe fatigue and noise problems of modular bridge expansion joints (MBEJs) are often induced by vehicle loads. However, the dynamic characteristics of single-support MBEJs have yet to be further investigated. To better understand the vibration mechanism of single-support MBEJs under vehicle loads, a 3D finite element model of single-support MBEJ with five center beams is built. Successive vehicle loads are given out and the vertical dynamic responses of each center beams are analyzed under the successive loads. Dynamic amplification factors (DAFs) are also calculated along with increasing vehicle velocities from 20 km/h to 120 km/h with an interval 20 km/h. The research reveals the vibration mechanism of the single-support MBEJs considering coupled center beam resonance, which shows that dynamic responses of a given center beam will be influenced by the neighboring center beams due to their rebound after the vehicle wheels depart. Maximal DAF 1.5 appears at 120 km/h on the second center beam. The research results can be utilized for reference in the design, operation and maintenance of single-support MBEJs.

A modified replacement beam for analyzing building structures with damping systems

  • Faridani, Hadi Moghadasi;Capsoni, Antonio
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.905-929
    • /
    • 2016
  • This paper assesses efficiency of the continuum method as the idealized system of building structures. A modified Coupled Two-Beam (CTB) model equipped with classical and non-classical damping has been proposed and solved analytically. In this system, complementary (non-classical) damping models composed of bending and shear mechanisms have been defined. A spatial shear damping model which is non-homogeneously distributed has been adopted in the CTB formulation and used to equivalently model passive dampers, viscous and viscoelastic devices, embedded in building systems. The application of continuum-based models for the dynamic analysis of shear wall systems has been further discussed. A reference example has been numerically analyzed to evaluate the efficiency of the presented CTB, and the optimization problems of the shear damping have been finally ascertained using local and global performance indices. The results reveal the superior performance of non-classical damping models against the classical damping. They show that the critical position of the first modal rotation in the CTB is reliable as the optimum placement of the shear damping. The results also prove the good efficiency of such a continuum model, in addition to its simplicity, for the fast estimation of dynamic responses and damping optimization issues in building systems.

Analytical solutions for static bending of edge cracked micro beams

  • Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.579-599
    • /
    • 2016
  • In this study, static bending of edge cracked micro beams is studied analytically under uniformly distributed transverse loading based on modified couple stress theory. The cracked beam is modelled using a proper modification of the classical cracked-beam theory consisting of two sub-beams connected through a massless elastic rotational spring. The deflection curve expressions of the edge cracked microbeam segments separated by the rotational spring are determined by the Integration method. The elastic curve functions of the edge cracked micro beams are obtained in explicit form for cantilever and simply supported beams. In order to establish the accuracy of the present formulation and results, the deflections are obtained, and compared with the published results available in the literature. Good agreement is observed. In the numerical study, the elastic deflections of the edge cracked micro beams are calculated and discussed for different crack positions, different lengths of the beam, different length scale parameter, different crack depths, and some typical boundary conditions. Also, the difference between the classical beam theory and modified couple stress theory is investigated for static bending of edge cracked microbeams. It is believed that the tabulated results will be a reference with which other researchers can compare their results.

A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams

  • Kheroubi, Boumediene;Benzair, Abdelnour;Tounsi, Abdelouahed;Semmah, Abdelwahed
    • Advances in nano research
    • /
    • v.4 no.4
    • /
    • pp.251-264
    • /
    • 2016
  • In this paper, a simple and refined nonlocal hyperbolic higher-order beam theory is proposed for bending and vibration response of nanoscale beams. The present formulation incorporates the nonlocal scale parameter which can capture the small scale effect, and it considers both shear deformation and thickness stretching effects by a hyperbolic variation of all displacements across the thickness without employing shear correction factor. The highlight of this formulation is that, in addition to modeling the displacement field with only two unknowns, the thickness stretching effect (${\varepsilon}_z{\neq}0$) is also included in the present model. By utilizing the Hamilton's principle and the nonlocal differential constitutive relations of Eringen, the equations of motion of the nanoscale beam are reformulated. Verification studies demonstrate that the developed theory is not only more accurate than the refined nonlocal beam theory, but also comparable with the higher-order shear deformation theories which contain more number of unknowns. The theoretical formulation proposed herein may serve as a reference for nonlocal theories as applied to the static and dynamic responses of complex-nanobeam-system such as complex carbon nanotube system.

Retrofitting of shear damaged RC beams using CFRP strips

  • Altin, Sinan;Anil, Ozgur;Toptas, Tolga;Kara, M. Emin
    • Steel and Composite Structures
    • /
    • v.11 no.3
    • /
    • pp.207-223
    • /
    • 2011
  • The results of an experimental investigation are presented in this paper for retrofitting of shear damaged reinforced concrete beams by using U shaped CFRP strips. The experimental program is consisted of seven shear deficient T cross sectioned 1/2 scale simply supported beam specimens. One beam was used as reference specimen, and the remaining six specimens were tested in two stages. At the first stage, specimens were shear damaged severely, and then were retrofitted by using CFRP strips with or without fan type anchorages. Finally, retrofitted beams were tested up to failure. Three different CFRP strip spacing were used such as 125 mm, 150 mm, and 200 mm. The effect of anchorages on shear strength and behavior of the retrofitted specimens is investigated. CFRP strips without anchorages improved the shear strength, but no flexural failure mode was observed. Specimens showed brittle shear failure due to peeling of CFRP strip from RC beam surface. Shear damaged specimens retrofitted with anchoraged CFRP strips showed improved shear strength and ductile flexural failure. Maximum strains at anchoraged strips were approximately 68% larger than that of strips without anchorages.

A Study on Manufacturing Norms of Wollyang(月梁) Head in the 《Yeongjobeosig(營造法式)》 Song Dynasty (송(宋) 《영조법식(營造法式)》 중 월량(月梁) 보머리 가공 규범에 대한 고찰)

  • Lee, Yong-Jun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.21 no.3
    • /
    • pp.33-40
    • /
    • 2019
  • Woolyang(月梁) is a beam which whole shape is curved like a so-called moon(月). According to the ${\ll}$Yeongjobeosig(營造法式)${\gg}$, In the case of beams installed under the ceiling of a wooden building, it is used by manufacturing them in Woolyang(月梁) for maximum visual decorative effects as the shape is exposed. In order to achieve the end of a beam that is manufacturing in Woolyang(月梁), it is important to process it in a suitable size and shape for a given situation to achieve a combination with other members around it. However, in the "營造法式", the standard of production of the Woolyang(月梁) is divided into Myeongbog(明?), Chagyeon(箚牽), Pyeonglyang(平梁), and the height of each beam head is divided into 21分$^{\circ}$, 15分$^{\circ}$, 25分$^{\circ}$, but it is not possible to look at any more specific reference. In this paper, try to consider the principle of Woolyang(月梁) manufacturing and its normative contents which were indirectly proposed in the ${\ll}$Yeongjobeosig(營造法式)${\gg}$.

Flexural behavior of partially prefabricated partially encased composite beams

  • Liang, Jiong-feng;Zhang, Liu-feng;Yang, Ying-hua;Wei, Li
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.705-716
    • /
    • 2021
  • An innovative partially precast partially encased composite beam (PPECB) is put forward based on the existing research. In order to study the flexural performance of the new composite beam which has precast part and cast-in-place part, six prefabricated specimens and one cast-in-place specimen are designed with considering the influence of the production method, the steel flange thickness, the concrete strength grade and the stirrup process on the behavior of the composite beam. Through four points loading and test data collection and analysis, the behavior of partially prefabricated specimen is similar to that of cast-in-place specimen, and the casting method, the thickness of the steel flange, the concrete strength grade and the stirrup process have different influence on the crack, yield and peak load bearing capacity of the component. Finally, the calculation theory of plastic bending of partially precast partially encased concrete composite beams is given. The calculation results are in good agreement with the experimental results, which can be used for practical engineering theory guidance. This paper can provide reference value for further research and engineering application.

An experimental investigation of the flexural strengthening of preloaded self-compacted RC beams using CFRP sheets and laminates composites

  • Lattif, Youssef;Hamdy, Osman
    • Advances in concrete construction
    • /
    • v.13 no.4
    • /
    • pp.307-313
    • /
    • 2022
  • This paper performs an experimental study on the flexural behavior of preloaded reinforced self-compacted concrete beams strengthened with carbon fiber reinforced polymers CFRP. A group of six preloaded strengthened beams was investigated along with one unstrengthened beam used as a reference beam RB. All beams have the same dimensions and reinforcement details: three beams are strengthened with CFRP laminates against flexural failure and three beams are strengthened with CFRP sheets. For simulating actual conditions, the beams are loaded before strengthening. Then, after strengthening, the beams are tested for flexural strength using 4-point loads where cracked and ultimate load and failure mode, along with load-deflection relation are recorded. To study the different configurations of strengthening, one layer, two layers, and U-wrap formation of laminates and sheets are considered. The results show that strengthing the RC beams using CFRP is an effective method to increase the beam's capacity by 47% up to 153% where deflection is reduced by 5%-80%. So, the beams strengthened with CFRP laminates have higher load capacity and lower ductility in comparison with the beams strengthened with CFRP sheets.