건설 프로젝트는 기획부터 완공까지 공사비 예측, 확인, 그리고 정산 단계로 이루어진다. 건설원자재 평균 가격은 변동성을 지닌다. 하지만 건설 프로젝트의 자재비 산정은 계획단계 시점의 시세를 반영하여 결정되기 때문에, 시공단계에서 자재가 투입될 시점의 시세 변동에 따라 예상한 가격과 차이가 날 수 있다. 건설 산업은 건설원자재 가격 변동으로 인한 수요예측 실패, 프로젝트 비용변경으로 인한 사용자 비용 증가, 예측 체계성 부족으로 인한 손실이 발생한다. 이에 따라 건설원자재 가격 예측의 정확도 개선이 필요하다. 본 연구는 Data Refactor 기법의 개선을 통해 건설원자재 가격 예측 및 적용성 검증을 목적으로 한다. 건설원자재의 가격 예측의 정확도를 높이기 위하여 기존의 데이터 리팩토 간의 저·고빈도의 분류 및 ARIMAX 활용법을 빈도 위주 및 ARIMA 기법 활용으로 개선하여 건설원자재 목재, 시멘트 등 6개 품목의 단기(미래 3개월), 중기(미래 6개월), 장기(미래 12개월) 가격을 예측하였다. 분석한 결과 개선된 Data Refactor 기법을 기반으로 한 예측값이 오차는 줄었고 변동성은 확장되었다. 따라서, 본 연구에서 제안된 Data Refactor 기법을 통해 건설원자재 가격을 더 정확하게 예측하여 예산을 효과적으로 관리할 수 있을 것으로 기대된다.
International Journal of Internet, Broadcasting and Communication
/
제16권3호
/
pp.184-191
/
2024
The focus of this paper is secure code development and maintenance. When it comes to safe code, it is most important to consider code readability and maintainability. This is because complex code has a code smell, that is, a structural problem that complicates code understanding and modification. In this paper, the goal is to improve code quality by detecting and removing smells existing in code. We target the encryption and decryption code SEED.c and evaluate the quality level of the code using several metrics such as lines of code (LOC), number of methods (NOM), number of attributes (NOA), cyclo, and maximum nesting level. We improved the quality of SEED.c through systematic detection and refactoring of code smells. Studies have shown that refactoring processes such as splitting long methods, modularizing large classes, reducing redundant code, and simplifying long parameter lists improve code quality. Through this study, we found that encryption code requires refactoring measures to maintain code security.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권3호
/
pp.757-770
/
2022
Palmprint recognition has drawn increasingly attentions in the past decade due to its uniqueness and reliability. Traditional palmprint recognition methods usually use high-resolution images as the identification basis so that they can achieve relatively high precision. However, high-resolution images mean more computation cost in the recognition process, which usually cannot be guaranteed in mobile computing. Therefore, this paper proposes an improved low-resolution palmprint image recognition method based on residual networks. The main contributions include: 1) We introduce a channel attention mechanism to refactor the extracted feature maps, which can pay more attention to the informative feature maps and suppress the useless ones. 2) The ResStage group structure proposed by us divides the original residual block into three stages, and we stabilize the signal characteristics before each stage by means of BN normalization operation to enhance the feature channel. Comparison experiments are conducted on a public dataset provided by the Hong Kong Polytechnic University. Experimental results show that the proposed method achieve a rank-1 accuracy of 98.17% when tested on low-resolution images with the size of 12dpi, which outperforms all the compared methods obviously.
IT 기술 및 비즈니스의 급속한 발전에 따라 새로운 서비스를 고객에게 제공하기 위한 노력이 증가하고 있으며, 신속한 서비스 제공을 위해 기존의 레거시 시스템에 대한 개선 및 확장이 빈번히 발생하고 있다. 이로 인하여 기존 레거시 시스템에 대한 소스 코드의 품질 확보는 서비스 요구에 신속히 대응할 수 있는 핵심적인 기술 요소가 되었다. 리팩토링은 기존 레거시 코드에 대한 품질을 확보하기 위한 공학적 기술로서, 부가가치를 제공하는 레거시 시스템의 개선 및 확장에 필수적이다. 본 논문에서는 레거시 시스템의 소스 코드 품질 향상을 위한 기존의 리팩토링 기법과 지원 도구에 대한 조사 분석을 통해 리팩토링 기법과 도구에 대한 특성을 제안한다. 제안하는 특성을 기반으로 서비스 개발자가 레거시 시스템의 소스 코드 품질 향상을 위하여 리팩토링을 수행하고자 하는 경우, 어떠한 기법과 도구를 활용할 것인가에 대한 가이드라인을 제공받을 수 있다. 이를 통해 보다 정확하고 시행착오 없는 레거시 시스템의 소스 코드 품질을 향상시킬 수 있으며, 새로운 서비스에 대한 신속한 대응도 가능하게 될 것이다.
소프트웨어 공학 영역에 인공지능의 접목은 큰 화두 중 하나이다. 전 세계적으로 1) 인공지능을 통한 소프트웨어 공학, 2) 소프트웨어 공학을 통한 인공지능 두 가지 방향으로 활발히 연구되고 있다. 그 중 소프트웨어 공학에 인공지능을 접목하여 나쁜 코드 영역을 식별하고 해당 부분을 리팩토링하는 연구가 진행되고 있다. 해당 연구에서 인공지능이 나쁜 코드 요소의 패턴을 잘 학습하기 위해서는 학습하려는 나쁜 코드 요소가 라벨링 된 데이터셋이 필요하다. 문제는 데이터셋이 부족할뿐더러, 자체적으로 수집한 데이터셋의 정확도는 신뢰할 수 없다. 이를 해결하기 위해 코드 데이터 수집 시 전체 코드가 아닌 높은 복잡도를 가진 코드 모듈 영역을 대상으로만 나쁜 코드 데이터를 수집한다. 이후 수집한 데이터셋을 CodeBERT 모델의 전이 학습하여 코드 공통 취약점을 탐색하는 방법을 제안한다. 해당 데이터셋을 통해 CodeBERT 모델이 코드의 공통 취약점 패턴을 더 잘 학습할 수 있다. 이를 통해 전통적인 방법보다 인공지능 모델을 이용해 코드를 분석하고 공통 취약점 패턴을 더 정확하게 식별할 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.