• Title/Summary/Keyword: Reductive elimination

Search Result 17, Processing Time 0.026 seconds

Synthesis of N,N-Dimethylacetamide from Carbonylation of Trimethylamine by Rhodium(I) Complex Under Anhydrous Condition

  • Hong, Jang-Hwan
    • Journal of Integrative Natural Science
    • /
    • v.8 no.4
    • /
    • pp.235-243
    • /
    • 2015
  • Rhodium(I)-complex of $[Rh(CO)_2I_2{^-}]$ catalyzed carbonylation of anhydrous-trimethylamine in the presence of methyl iodide to give DMAC (N,N-dimethylacetamide) in no solvent. The catalyst had been reused 20 times, the analyses and distillation of collected products showed that the yields of DMAC, MAA (N-methylacetamide), and DMF (N,N-dimethylformamide) were 82.3%, 12.6%, and 4.4%. The conversion rate of trimethylamine was 99 % and the selectivity of DMAC was 82.3% with TON (Turnover Number) of 700. Stepwise procedure of inner-sphere reductive elimination for the formation of DMAC was suggested instead of acyl iodide intermediate.

Electrochemical dehalogenation of disinfection by-products and iodine-containing contrast media: A review

  • Korshin, Gregory;Yan, Mingquan
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.345-353
    • /
    • 2018
  • This paper summarizes results of research on the electrochemical (EC) degradation of disinfection by-products (DBPs) and iodine-containing contrast media (ICMs), with the focus on EC reductive dehalogenation. The efficiency of EC dehalogenation of DBPs increases with the number of halogen atoms in an individual DBP species. EC reductive cleavage of bromine from parent DBPs is faster than that of chlorine. EC data and quantum chemical modeling indicate that the EC reduction of iodine-containing DBPs (I-DBPs) is characterized by the formation of active iodine that reacts with the organic substrate. The occurrence of ICMs has attracted attention due to their association with the generation of I-DBPs. Indirect EC oxidation of ICMs using anodes that produce reactive oxygen species can result in a complete degradation of these compounds yet I-DBPs are formed in the process. Reductive EC deiodination of ICMs is rapid and its overall rate is diffusion-controlled yet I-DBPs are also produced in this reaction. Further progress in practically feasible EC methods to remove DBPs, ICMs and other trace-level organic contaminants requires the development of novel electrocatalytic materials, elimination of mass transfer limitations via innovative design of 3D electrodes and EC reactors, and further progress in the understanding of intrinsic mechanisms of EC reactions of DBPs and TrOC at EC interfaces.

Alkylhydridorhodium(Ⅲ) Route for Isomerization and Hydrogenation of Unsaturated Alcohols with Rh(ClO$_4)(CO)(PPh_3)_2$ and [Rh(CO)(PPh$_3)_3]ClO_4$ under Hydrogen

  • Chin, Chong-Shik;Park, Jeong-Han;Kim, Choon-Gil
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.4
    • /
    • pp.360-362
    • /
    • 1989
  • Catalytic isomerization of unsaturated alcohols to the corresponding carbonyl compounds with$Rh(ClO_4)(CO)(PPh_3)_2\;(1)\;and\;[Rh(CO)(PPh_3)_3]ClO_4$ (2) is faster under hydrogen (where hydrogenation also occurs to give saturated alcohols) than under nitrogen. The isomerization under hydrogen seems to occur through an alkylhydridorhodium(III) complex which also undergoes reductive elimination to give hydrogenation products, saturated alcohols. The isomerization under hydrogen is faster with 2 than with 1, which is understood by acceleration of the last step, enol formation by $PPh_3$ dissociated from 2 and present in the reaction mixture when 2 is used as catalyst. Relative rates of the isomerization observed for different unsaturated alcohols are interpreted by steric effects of substituted groups and numbers of hydrogens to be abstracted by the rhodium of the intermediate, alkylhydridorhodium(III) to undergo the reductive elimination to give enol which is then rapidly converted into a carbonyl compound. It has been observed that the hydrogenation is relatively significant when reactions occur slowly whereas the isomerization is predominant when reactions proceed rapidly.

Catalytic Isomerization of Allyic Alcohols to Carbonyl Compounds with Rh(ClO$_4$)(CO)(PPh$_3)_2$ and [Rh(CO)(PPh$_3)_3$]ClO$_4$

  • Chin Chong Shik;Park Jeonghan;Kim Choongil
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.102-103
    • /
    • 1989
  • Four coordinated rhodium(Ⅰ) complexes, Rh($ClO_4$)(CO)$(PPh_3)_2$ and [$Rh(CO)(PPh_3)_3$]$ClO_4$(2) catalyze the iosmerization of allylic alcohols to the corresponding carbonyl compounds at room temperature under nitrogen. The isomerization is faster with 2 than with 1, which is understood in terms of relative ease of the last step of the catalytic cycle, the reductive elimination of enol. Relative rates of the isomerization with 1 and 2 for different allylic alcohols are also explained by the relative ease of the enol elimination step in part. The first step of the catalytic cycle, the complex formation of the allylic alcohol through the ${\pi}-system$ of the olefinic group of the allylic alcohol and the following step, formation of hydridoallyl complex also seem to affect the overall rate of the isomerization.

An Efficient Method for the Production of Cyclohexylamine from Cyclohexanone and Ammonia over Cu-Cr-La/γ-Al2O3

  • Qin, Shuanglin;Wang, Pan;Huang, Shuangping;Liu, Shuai;Wang, Gaopeng;Wang, Liping;Sun, Meng;Wang, Xiaoji
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.6
    • /
    • pp.493-498
    • /
    • 2015
  • The reductive amination of cyclohexanone with ammonia over Cu-Cr-a/γ-Al2O3 was investigated. It was found that a proper solvent with high solubility of ammonia and 4Å molecular sieves for the elimination of generated water contributed to the formation of cyclohexylamine in the premixing process. In addition, the addition of ammonia in the fixedbed reactor could obviously improve the conversion of cyclohexanone to cyclohexylamine. Finally, reaction conditions including reaction temperature, hydrogen pressure and charging rate of the premix were optimized. Under the optimized conditions, cyclohexylamine was obtained in 83.06% yield.

C-C Bond Cleavage of 8-Quinolinyl Alkyl Ketone by $\sigma,\eta^{3-}$-Allyl Rhodium(III) Complex

  • 이대윤;임영권;전철호
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.824-827
    • /
    • 1997
  • Bis(ethylene)rhodium(Ⅰ) chloride dimer reacted with vinylcyclopropane to give σ,η3-allylrhodium(Ⅲ) complex 3. Complex 3 underwent C-C bond cleavage of 8-quinolinyl ethyl ketone 11, to form η3-1,3-dimethylallylrhodium(Ⅲ) complex 8, which was reductively eliminated by trimethyl phosphite to give 8-quinolinyl-1-methylbut-2-enyl ketone (10). More sterically hindered 8-quinolinyl alkyl ketones were allowed to react with complex 3 to afford corresponding alkenes as well as a mixture of complex 8 and η3-1-ethylallyl rhodium(Ⅲ) complex 19, identified as 10 and 8-quinolinyl-pent-2-enyl ketone (20) after reductive elimination. 8-Quinolinyl alkyl ketone bearing a sterically hindered alkyl group showed less reactivity for C-C bond cleavage and higher 20/10 ratio compared with those having a less sterically hindered alkyl group, such as 8-quinolinyl ethyl ketone (11).

Synthesis of$\beta,\gamma$-Unsaturated Ketones through Ligand-Promoted Hydroiminoacylation of Dienes by Rh

  • Jun Chul-Ho;Koo Bon-Tak;Kang Jung-Bu;Kim Keun-Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1064-1069
    • /
    • 1994
  • Chlorobis(isoprene)rhodium(Ⅰ) (3), prepared by olefin-exchange reaction of chlorobis(cyclooctene)rhodium dimer (2) with isoprene, reacted with benzaldimine 4 to give iminoacylrhodium(Ⅲ) ${\eta}^3$-1,2-dimethylallyl complex 6. Ligand-promoted reductive elimination of 6 by pyridine and P(OMe)$_3$ produced ${\beta},{\gamma}$-unsaturated ketimine 8, which was readily hydrolyzed to give ${\beta},{\gamma}$-unsaturated ketone 9. Other methyl branched dienes such as 2,3-dimethylbutadiene, 3-methyl-1,3-pentadiene, 2-methyl-1,3-pentadiene, 2,4-dimethyl-1,3-pentadiene, 3-methyl-1,4-pentadiene and 2-methyl-1,4-pentadiene, were applied the synthesis of ${\beta},{\gamma}$-unsaturated ketones. In case of 2,4-dimethyl-1,3-pentadiene, only ${\gamma},{\delta}$ -unsaturated ketone 25, 1,2-addition product, was obtained, may be due to the mono-olefin coordination.