• Title/Summary/Keyword: Reductive coupling reaction

Search Result 12, Processing Time 0.018 seconds

Mechanistic Study of Half-titanocene-based Reductive Pinacol Coupling Reaction

  • Kim, Young-Jo;Do, Young-Kyu;Park, Sung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3973-3978
    • /
    • 2011
  • The reductive pinacol coupling reaction of aldehydes or ketones creating a new C-C bond has been a major tool to produce 1,2-diol compounds. The reaction mechanism is known to be composed of sequential three steps (activation, coupling, and dissociation). In this work, we studied the dissociation step of half-titanocene-based catalytic systems. Cp and $Cp^*$ derivatives of the pinacolato-bridged dinuclear complex were synthesized and evaluated as possible models for intermediates from the coupling step. We monitored $^1H$-NMR spectra of the reaction between the metalla-pinacol intermediates and $D_2O$. New reaction routes of the dissociation step including oxo- and pinacolato-dibridged dinuclear complexes and oxo-bridged multinuclear complexes have been suggested.

Synthesis of Azobenzene Derivatives via Controlled Potential Cathodic Electrolysis (조절전위법 음전극 유기반응을 이용한 아조벤젠 유도체들의 합성)

  • Kim Byeong Hyo;Choi Yong Rack;Kim Dae Ho;Han Rongbi;Baik Woonphil;Jun Young Moo
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.209-212
    • /
    • 1999
  • Using an H-type divided cell, reductive coupling reaction of nitroarene toward azobenzenes in a mild condition was successfully accomplished by the controlled potential cathodic electrolysis reaction. Optimum reaction potential of each reaction was determined based on cyclic voltammetric behavior in methanol solution at Pb or Pt cathode, and Pt anode. In most cases, reductive coupling reactions were successful with excellent yields regardless of the position and the character of the substituents.

Platinum-Catalyzed Reductive Aldol and Michael Reactions

  • Lee, Ha-Rim;Jang, Min-Soo;Song, Young-Jin;Jang, Hye-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.327-333
    • /
    • 2009
  • For the Pt-catalyzed nucleophilic addition of enones, Pt complexes were employed in the presence of various phosphine ligands and $H_2\;(or\;Et_3SiH),$ affording inter- and intra-molecular coupling products in good to modest yield. Depending on reaction protocols, different phosphine ligands were required to optimize the conditions. In the aldol reaction, the Pt catalyst involving $P(2,4,6-(OMe)_3C_6H_2)3\;or\;P(p-OMeC_6H_4)_3$ was chosen. Michael reaction proceeds in good yields in the presence of $P(p-CF_3C_6H_4)_3$. Regarding the activity of the reductants, $H_2$ exhibited superior activity to $Et_3SiH$, resulting in a shorter reaction time and higher yield in the aldol and Michael reaction. In light of the deuterium labeling studies, the catalytic cycle including the hydrometalation of the enones by the platinum hydride species was proposed.

Lanthanide-Oxalate Coordination Polymers Formed by Reductive Coupling of Carbon Dioxide to Oxalate: [Ln2(3,5-pdc)2(C2O4)(H2O)4]·2H2O (Ln = Eu, Sm, Ho, Dy; pdc = Pyridinedicarbox

  • Huh, Hyun-Sue;Lee, Soon W.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1839-1843
    • /
    • 2006
  • Hydrothermal reactions of $Ln(NO_3)_3{\cdot}5H_2O $ (Ln = Eu (1), Sm (2), Ho (3), Dy (4)) with 3,5-pyridinedicarboxylic acid (3,5-pdcH2) in the presence of 4,4'-bipyridine led to the formation of the 3-D Ln(III)-coordination polymers with a formula unit of $[Ln_2(3,5-pdc)_2(C_2O_4)(H_2O)_4]{\cdot}2H_2O$. These polymers contain a bridging oxalate ligand ($C_2O_4\;^2$). On the basis of GCMS study of the mother liquor remaining after the reaction, we proposed that the $C_2O_4\;^2$ formation proceeds in three steps: (1) Ln(III)-mediated decarboxylation of $3,5-pdcH_2$ to give $CO_2$, (2) the reduction of $CO_2$ to $CO_2\;^{\cdot}$ by the Ln(II) species, and (3) the reductive coupling of the two $CO_2\;^{\cdot}$ radicals to the oxalate ($C_2O_4\;^2$) ion. All polymers were structurally characterized by X-ray diffraction.

Synthesis and Application of Oligo(3-Methylthiothiophene) Using Palladium Catalyst (Palladium 촉매를 이용한 Oligo(3-methylthiothiophene)의 합성과 응용)

  • Park, Sang-Ho;Jung, Moon-Young;Bae, Jin-Young
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.469-473
    • /
    • 2007
  • In this study, oligo(3-methylthiothiophene) was synthesized from thiophene derivative according to the method of reductive coupling using palladium catalyst. For the preparation of monomer, 3-methylthiothiophene was first synthesized through the metal-halogen exchange reaction of 3-bromothiophene with n-butyllithiuim, and the corresponding 2,5-dibromo-3-methylthiothiophene was formed by bromination. Their synthesis and characterization were determined by $^1H-NMR$ and ATR analyses. Thermal stability of the oligothiophene was monitored by thermogravimetric analysis (TGA). Thermal evaporation of the oligo(3-methylthiothiophene) on the substrate was attempted for OTFT applications.

Complete In Vitro Conversion of n-Xylose to Xylitol by Coupling Xylose Reductase and Formate Dehydrogenase

  • Jang, Sung-Hwan;Kang, Heui-Yun;Kim, Geun-Joong;Seo, Jin-Ho;Ryu, Yeon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.501-508
    • /
    • 2003
  • Artificial coupling of one enzyme with another can provide an efficient means for the production of industrially important chemicals. Xylose reductase has been recently discovered to be useful in the reductive production of xylitol. However, a limitation of its in vitro or in vivo use is the regeneration of the cofactor NAD(P)H in the enzyme activity. In the present study, an efficient process for the production of xylitol from D-xylose was established by coupling two enzymes. A NADH-dependent xylose reductase (XR) from Pichia stipitis catalyzed the reduction of xylose with a stoichiometric consumption of NADH, and the resulting cofactor $NAD^+$ was continuously re-reduced by formate dehydrogenase (FDH) for regeneration. Using simple kinetic analyses as tools for process optimization, suitable conditions for the performance and yield of the coupled reaction were established. The optimal reaction temperature and pH were determined to be about $30^{\circ}C$ and 7.0, respectively. Formate, as a substrate of FDH, affected the yield and cofactor regeneration, and was, therefore, adjusted to a concentration of 20 mM. When the total activity of FDH was about 1.8-fold higher than that of XR, the performance was better than that by any other activity ratios. As expected, there were no distinct differences in the conversion yields of reactions, when supplied with the oxidized form $NAD^+$ instead of the reduced form NADH, as a starting cofactor for regeneration. Under these conditions, a complete conversion (>99%) could be readily obtained from a small-scale batch reaction.

A New Synthetic Studies on Anticancer Agent Methotrexate (Anticancer Agent인 Methotrexate에 대한 새로운 합성 연구)

  • Yu Euy Kyung;Ryu Seoung Ryuall
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.1
    • /
    • pp.136-140
    • /
    • 1993
  • New synthetic method for diethyl N-[4-{[(2,4-diamino-6-yl)methyl]-amino}benzoyl]-L-glutamate(10) which is an intermediate of methotrexate is described. p-Nitrobenzoyl-L-glutamate was obtained via a two-step sequence which involves condensation of p-nitrobenzoyl chloride with diethyl-L-glutamate and Fischer esterification reaction with ethanol. Reductive methylation of diethyl-p-nitrobenzoyl-L-glutamate were carried out by reaction with formic acid and paraformaldehyde in the presence of $PtO_2$ catalyst and yielded diethyl N-(4-methylaminobenzoyl)-L-glutamate(7). It was followed by allylation and iodoazidozation to give the diethyl-p-[N-(2-azido-3-iodopropyl)-N-methyl]aminobenzoyl-L-glutamate(9). The cyclization reaction of compound(9) with 2,4,5,6-tetraaminopyrimidine was carried out by intermolecular nucleophilic substitution to give the desired methotrexate diethylester.

  • PDF

Syntheses of ($\pm$)-Homoepibatidine Analogues

  • Kim, Yong-Hyun;Oh, Chang-Young;Lee, Kee-Young;Lee, Yiu-Suk;Jung, Young-Hoon;Park, Hyun-Ju;Ham, Won-Hun
    • Archives of Pharmacal Research
    • /
    • v.25 no.1
    • /
    • pp.49-52
    • /
    • 2002
  • Syntheses of ($\pm$)-homoepibatidine analogues (2), which contain the 8-azabicyclo [3.2.1 ]octane ring system, were achieved by using palladium-catalyzed reductive-coupling reaction from 3 and the analgesic activity was tested by Mouse writhing antinociceptive assay