• Title/Summary/Keyword: Reduction of stream flow

Search Result 110, Processing Time 0.03 seconds

Impact Analysis of Construction of Small Wastewater Treatment Plant Under Climate Change (기후변화를 고려한 소규모 하수처리장 건설에 대한 영향 분석)

  • Park, Kyungshin;Chung, Eun-Sung;Kim, Sang-Ug;Lee, Kil Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.268-278
    • /
    • 2010
  • This study derived the effectiveness analysis results of construction of wastewater treatment plant under climate change scenarios. Canadian Global Coupled Model (CGCM3) was used and A1B and A2 of Special Report on Emission Scenario (SRES) were selected. Regional climate change data for this application were downscaled by using Statistical Downscaling Model (SDSM) and the flow and BOD concentration durations were obtained by using Hydrological Simulation Program - Fortran (HSPF). The criteria for low flow and water quality were chosen as $Q_{99}$, $Q_{95}$, $Q_{90}$ and $C_{30}$, $C_{10}$, $C_1$. The numbers of days to satisfy the instreamflow requirements and target BOD concentration were also added to the criteria for comparison. As a results, small wastewater treatment plant improved the water cycle due to the increase of low flow and the decrease of BOD concentration. But climate change affected the reduction of effectiveness significantly. Especially in case of construction of small waste water treatment plant in the upstream region, it is necessary to take climate change impact into consideration since it is usually related to the low flow and the water quality of the stream.

The Increase in Regression Rate due to Helical Grain in Solid Fuel of Hybrid Rocket (나선형 홈에 의한 하이브리드 로켓 고체연료의 연소율 증가 특성)

  • Hwang, Yeong-Chun;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.59-66
    • /
    • 2006
  • To understand the role of helical geometry on the regression rate enhancement, two competing underlying mechanisms such as turbulence enhancement and swirling motion production were studied by numerical calculations. Experimental results showed that the enhancement of heat transfer rate has the very close relation to the increase in regression rate even though the percentage of increase in heat transfer rate is different from that in regression rate. This discrepancy is presumably due to the change of turbulent flow feature caused by so-called "blowing mass flux" from the fuel surface. In this regard, the results of RANS calculation show that the blowing velocity is responsible for the reduction of the swirl generation and the increase in the turbulent kinetic energy. And the dominancy of one of the mechanisms causes the increase in the regression rate. Meanwhile, the increase in turbulent kinetic energy due to the mixing of blowing flow and free stream flow does not contribute for the enhancement of the heat transfer rate to the surface because the blowing flow pushes boundary layer away from the solid surface.

Assessment of Apprehensive Area of Non-Point Source Pollution Using Watershed Model Application in Juam Dam Watershed (주암댐 유역 비점오염부하량 우심지역 평가를 통한 오염물질 저감시설 최적 설치지점 선정 연구)

  • Yi, Hye-Suk;Choi, Kwang soon;Chong, Suna;Lee, Seung-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.10
    • /
    • pp.551-557
    • /
    • 2015
  • This study analyzes potentially hazardous sub-watersheds from non-point source pollution areas using an HSPF model. The watershed of the Juam dam reservoir was divided into 29 sub-watersheds, and the flow, BOD, TN and TP concentration for the Juam dam watershed were evaluated from 2009 to 2012 using a watershed model, with a warming period from 2009 to 2010. The results of the watershed model agreed well with the flow and water quality field measurements. The calculated average non-point source loadings were BOD of 8.8 and $9.1kg/day/km^2$ in 2011 and 2012, respectively; TN of 9.7 and $10.1kg/day/km^2$ in 2011 and 2012, respectively; and TP of 0.30 and $0.33kg/day/km^2$ in 2011 and 2012, respectively. The non-point source loading of the Bonghwa stream watershed was calculated, and predominantly assessed upstream of the Boseong river. Additionally, the Miryeok, Jangpyeong, Yuleo, Guam, Seokgyo, Mundeok, Incheon, and Bongnae stream watersheds, with extensive agricultural areas, were assessed to be potentially hazardous areas in terms of non-point source management. In this study, HSPF model was applied in order to aid in the selection of non-point source reduction facilities for the Juam dam watershed, where they were evaluated as to whether they would be applicable for non-point source management.

Analysis of Sediment Reduction with VFS and Diversion Channel with Enhancements in SWAT Landuse-Subbasin Overland Flow and VFS Modules

  • Park, Youn-Shik;Kim, Jong-Gun;Kim, Nam-Won;Engel, Bernie;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.752-757
    • /
    • 2009
  • In the last decade, many methods such as greet chamber, reservoir, or debris barrier, have been utilized to manage and prevent muddy water problem. The Vegetative Filter Strip (VFS) has been thought to be one of the most effective methods to trap sediment effectively. The VFS are usually installed at the edge of agricultural areas adjacent to stream or drainage ditches, and it has been shown that the VFS effectively removes pollutants transported with upland runoff. But, if the VFS is installed without any scientific analysis of rainfall-runoff characteristics, soil erosion, and sediment analysis, it may not reduce the sediment as much as expected. Although Soil and Water Assessment Tool (SWAT) model has been used worldwide for many hydrologic and Non-Point Source Pollution (NPSP) analysis at a watershed scale. but it has many limitations in simulating the VFS. Because it considers only 'filter strip width' when the model estimates sediment trapping efficiency, and does not consider the routing of sediment with overland flow option which is expected to maximize the sediment trapping efficiency from upper agricultural subbasin to lower spatially-explicit filter strip. Therefore, the SWAT overland flow option between landuse-subbasins with sediment routing capability was enhanced with modifications in SWAT watershed configuration and SWAT engine. The enhanced SWAT can simulate the sediment trapping efficiency of the VFS in the similar way as the desktop VFSMOD-w system does. Also it now can simulate the effects of overland flow from upper subbasin to reflect the increased runoff volume at the receiving subbasin, which is what is occurring at the field if no diversion channel is installed. In this study, the enhanced SWAT model was applied to small watershed located at Jaun-ri in South Korea to simulate diversion channel and spatially-explicit VFS. It was found that approximately sediment can be reduced by 31%, 65%, 68%, with diversion channel, the VFS, and the VFS with diversion channel, respectively.

  • PDF

Assessment of the Non-point Source Pollution Control Strategies for Water Quality Improvement in the Haeban Stream of West Nakdong River Watershed (서낙동강 유역 해반천의 수질 개선을 위한 비점오염관리대책 효과 분석)

  • Yejin Kim
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • In this study, a HSPF model was developed to simulate runoff and water quality in the Haebancheon watershed, which has a high land area ratio and population density among the West Nakdong River watersheds. Various non-point source pollution control strategies were applied, and the reduction in pollutant loads and the exceedance rate of water quality standards were analyzed. The scenarios included basic road cleaning for reducing pollutant loads, runoff reduction measures considering extensive low-impact development techniques, and inflow reduction measures to mitigate non-point source pollution entering the river. In the first step, practical conditions such as the number of vehicles for road cleaning in Kimhae City were considered, while for the second and third steps, it was assumed that 50% of the applicable land use area was used to be applicable for the LID techniques. As a result of applying all three measures, it was analyzed that the BOD pollutant load could be reduced by 58.28%, T-N by 58.49%, and T-P by 51.56%. Furthermore, the 60th percentile of water quality measurements accumulated over 5 years was set as the target water quality, and a flow-duration curve was constructed. The exceedance rate of the flow-duration curve before and after applying non-point source pollution reduction measures was analyzed. As a result, for BOD, the exceedance rate decreased from 41.57% before applying the measures to 16.32% after, showing a 25.25% reduction in the exceedance rate. For T-N, the exceedance rate decreased significantly from 40.31% before the measures to 22.84% after, and for T-P, it decreased significantly from 62.43% to 27.22%.

Analysis of National Stream Drying Phenomena using DrySAT-WFT Model: Focusing on Inflow of Dam and Weir Watersheds in 5 River Basins (DrySAT-WFT 모형을 활용한 전국 하천건천화 분석: 전국 5대강 댐·보 유역의 유입량을 중심으로)

  • LEE, Yong-Gwan;JUNG, Chung-Gil;KIM, Won-Jin;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.53-69
    • /
    • 2020
  • The increase of the impermeable area due to industrialization and urban development distorts the hydrological circulation system and cause serious stream drying phenomena. In order to manage this, it is necessary to develop a technology for impact assessment of stream drying phenomena, which enables quantitative evaluation and prediction. In this study, the cause of streamflow reduction was assessed for dam and weir watersheds in the five major river basins of South Korea by using distributed hydrological model DrySAT-WFT (Drying Stream Assessment Tool and Water Flow Tracking) and GIS time series data. For the modeling, the 5 influencing factors of stream drying phenomena (soil erosion, forest growth, road-river disconnection, groundwater use, urban development) were selected and prepared as GIS-based time series spatial data from 1976 to 2015. The DrySAT-WFT was calibrated and validated from 2005 to 2015 at 8 multipurpose dam watershed (Chungju, Soyang, Andong, Imha, Hapcheon, Seomjin river, Juam, and Yongdam) and 4 gauging stations (Osucheon, Mihocheon, Maruek, and Chogang) respectively. The calibration results showed that the coefficient of determination (R2) was 0.76 in average (0.66 to 0.84) and the Nash-Sutcliffe model efficiency was 0.62 in average (0.52 to 0.72). Based on the 2010s (2006~2015) weather condition for the whole period, the streamflow impact was estimated by applying GIS data for each decade (1980s: 1976~1985, 1990s: 1986~1995, 2000s: 1996~2005, 2010s: 2006~2015). The results showed that the 2010s averaged-wet streamflow (Q95) showed decrease of 4.1~6.3%, the 2010s averaged-normal streamflow (Q185) showed decreased of 6.7~9.1% and the 2010s averaged-drought streamflow (Q355) showed decrease of 8.4~10.4% compared to 1980s streamflows respectively on the whole. During 1975~2015, the increase of groundwater use covered 40.5% contribution and the next was forest growth with 29.0% contribution among the 5 influencing factors.

Experimental Study on Coefficient of Flow Convection (유수대류계수에 관한 실험적 연구)

  • Jeon, Sang-Eun;Kim, Kook-Han;Kim, Jin-Keun;Yang, Joo-Kyoung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.314-322
    • /
    • 2003
  • Pipe cooling method is widely used for reduction of hydration heat and control of cracking in mass concrete structures. However, in order to effectively apply pipe cooling systems to concrete structures, the coefficient of flow convection relating the thermal transfer between inner stream of pipe and concrete must be estimated. In this study, a device measuring the coefficient of flow convection was developed. Since a variation of thermal distribution caused by pipe cooling has a direct effect on internal forced flows, the developed testing device is based on the internal forced flow concept. Influencing factors on the coefficient of flow convection are mainly flow velocity, pipe diameter and thickness, and pipe material. Using experimental results from the developed device, the coefficient of flow convection was calculated. Finally, a general prediction model was proposed by theoretical procedures. The proposed prediction model is able to estimate the coefficient of flow convection with flow velocity and material properties of pipe. From comparison with experimental results, the coefficient of flow convection by this model was well agreed with those by experimental results.

Low Impact Urban Development For Climate Change and Natural Disaster Prevention

  • Lee, Jung-Min;Jin, Kyu-Nam;Sim, Young-Jong;Kim, Hyo-Jin
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.54-55
    • /
    • 2015
  • Increase of impervious areas due to expansion of housing area, commercial and business building of urban is resulting in property change of stormwater runoff. Also, rapid urbanization and heavy rain due to climate change lead to urban flood and debris flow damage. In 2010 and 2011, Seoul had experienced shocking flooding damages by heavy rain. All these have led to increased interest in applying LID and decentralized rainwater management as a means of urban hydrologic cycle restoration and Natural Disaster Prevention such as flooding and so on. Urban development is a cause of expansion of impervious area. It reduces infiltration of rain water and may increase runoff volume from storms. Low Impact Development (LID) methods is to mimic the predevelopment site hydrology by using site design techniques that store, infiltrate, evaporate, detain runoff, and reduction flooding. Use of these techniques helps to reduce off-site runoff and ensure adequate groundwater recharge. The contents of this paper include a hydrologic analysis on a site and an evaluation of flooding reduction effect of LID practice facilities planned on the site. The region of this Case study is LID Rainwater Management Demonstration District in A-new town and P-new town, Korea. LID Practice facilities were designed on the area of rainwater management demonstration district in new town. We performed analysis of reduction effect about flood discharge. SWMM5 has been developed as a model to analyze the hydrologic impacts of LID facilities. For this study, we used weather data for around 38 years from January 1973 to August 2014 collected from the new town City Observatory near the district. Using the weather data, we performed continuous simulation of urban runoff in order to analyze impacts on the Stream from the development of the district and the installation of LID facilities. This is a new approach to stormwater management system which is different from existing end-of-pipe type management system. We suggest that LID should be discussed as a efficient method of urban disasters and climate change control in future land use, sewer and stormwater management planning.

  • PDF

Green-Split Coordination Strategy in Oversaturated Signal System (과포화교통상태에서의 SPLIT COORDINATION신호제어전략)

  • 이광훈
    • Journal of Korean Society of Transportation
    • /
    • v.11 no.1
    • /
    • pp.87-103
    • /
    • 1993
  • The subject this paper is the signal control strategy under oversaturated conditions. The nature of traffic control for oversaturation is essentially different from the standard control modes. While under non-saturated situation traffic control is needed for the sake of safety and efficiency, the throughput is essential under oversaturated conditions. Therefore berth objective and strategies differ. For an oversaturated stream the cycle time and the signal offset are thought to be of rather secondary importance. For this case the green split may well be the most important control variable to serve the excessive demand. Up to now, however, most efforts have concentrated on the strategy with the concept which lies just on the extension of Webster's. "Green-split Coordination Strategy for Over-Saturated Networks", presents newly contrived three types of strategies named Forward-coordination, Backward-coordination and Network-coordination respectively and describes the algorithms with the evaluations. The forward coordination strategy treats the forward wave of flow between two signals. The aim is to prevent the outbreak of queue due to the accumulation of temporary excess of demand in near-saturation or saturation flow. The backward coordination strategy treats the backward rave of flow between two signals. The goal is to prevent the waste of green time caused by the exit block at the upstream signal. for this purpose a feedback regulation is provided of the upstream green-split so that the inflow-outflow balance is kept zero. The resultant surplus of green time is alloted to other signal stages. Also here the examination is made of the appropriate value of the feedback control parameter. The network coordination strategy is operated to maximize the network throughput in a specific direction applying a bang-bang control at the bottleneck intersection. This is a type of intervenient control for policy reasons. For this strategy the green-split coordinations, particuarly the backward coordination, are essential as the tactical elements. In order to evaluate the preposed strategies those are compared with the latest existing strategy called saturation-degree-ratio control by the simulation experiments in an assumed 4$\times$4 grid network. The results are satisfactory showing a 10-15% reduction in delays and a 15% increase in network capacity.

  • PDF

Treatment Efficiency of a Surface - Flow Wetland System Constructed on Floodplain (고수부지활용 수질정화 자유수면 인공습지의 초기처리수준)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.277-283
    • /
    • 2001
  • This paper presents treatment efficiency and plant growth of a surface-flow constructed wetland system (30 meter in length and 10 meter in width) over one year after its establishment on a floodplain of a stream. Cattails (Typha angustiflora) grown on pots were transplanted on one half of its area from inlets and reeds (Phragmites australis) on another half from an outlet. Effluent discharged from a secondary-level treatment plant was funneled into the system. The stems of cattails and reeds emerging in April 2001 grew up to 165.9 cm and 95.3 cm, respectively until July 2001. The number of stems of cattails arid reeds in July 2001 increased by 65% and 100%, respectively, compared with that just after their planting. The growth of cattails was better than that of reeds during study period. The removal rates for SS, $BOD_5$, T-N and T-P was 33%, 43%, 31%, and 51%, respectively. The system was inundated seven times by storms over the monitoring period, which disturbed its environment and led to its lower treatment rates. The increase of SS concentration in effluent after inundation of the system was attributed to the falls of soil particles onto its water surface, which had been attached to the emergent plants by floods. Purification rates for T-N were relatively low for the period of late fall through winter until early spring due to lower water temperature which may have retarded microbial nitrification and denitrification mechanisms. Reduction in T-P concentration during fall and winter was relatively higher than that during summer and spring, which may have resulted from no system perturbations by floods and heavy storms during fall and winter.

  • PDF