• 제목/요약/키워드: Reduction of friction

검색결과 604건 처리시간 0.024초

An Experimental Study on Friction Reduction by Additives in a Water Channel

  • Kim Wu-Joan;Kim Hyoung-Tae
    • Journal of Ship and Ocean Technology
    • /
    • 제9권1호
    • /
    • pp.27-37
    • /
    • 2005
  • An experimental study has been carried out as a basic research for the development of the friction drag reduction technology for water-borne vehicles by injecting microbubbles or polymer solution. Experimental apparatus and procedures have been devised and prepared to measure the changes of the wall friction with the injection of additives and the basic experimental data on friction drag reduction are obtained for fully developed channel flows. The effects of key controlling parameters were investigated for higher drag reduction with varying the concentration and the injection rate of additives. The frictional drag has been reduced up to $25\%$ with the microbubble injection and $50\%$ with the polymer solution injection.

엔진 피스톤과 실린더 사이의 마찰 손실 저감 (Reduction of Friction Losses in Engine Piston and Cylinder)

  • 오병근;조남효
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.207-207
    • /
    • 2000
  • Fuel consumption of a modern combustion engine is significantly influenced by the mechanical friction losses. The reduction of the engine friction losses offers a remarkable potential in emission and fuel consumption reduction. The analysis of the engine friction distribution of modern engines shows that the piston and the cylinder have a high share at total engine friction. The present study uses PISDYN(by Ricardo) software to analyze the friction losses. The design parameters such as skirt profile, center of mass of the piston are shown to have key influences on the friction losses.

  • PDF

횡 방향 공동을 이용한 마찰 저항 감소 (Reduction of the Skin Friction Drag Using Transverse Cavities)

  • 김철규;전우평;최해천
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.397-400
    • /
    • 2006
  • In this study, we experimentally investigate the possibility of skin-friction drag reduction by series of transverse cavities in a turbulent boundary layer flow. The effects of cavity depth (d), cavity length (l) and cavity spacing (s) on the skin friction drag are examined in the range of $Re_{\theta}\;=\;4030\;{\sim}\;7360$, $d/{\theta}_0\;=\;0.13\;{\sim}1.03$, l/d = 1 ~ 4 and s/d = 5 ~ 20. We perform experiments for twenty different cavity geometries and directly measure total drag force using in-house force measurement system. In most cases, the skin friction drag is increased. At several cases, however, small drag reduction is obtained. The variation of the skin ftiction drag is more sensitive to the cavity length than to the cavity depth or cavity spacing, and drag is reduced at $s/l\;{\geq}\;10$ and $l/{\theta}_0\;{\leq}\;0.26$ irrespective of the cavity depth. At $l/\bar{\theta}_0\;=\;0.13$ and s/l = 10, maximum 2% drag reduction is achieved. When the skin friction drag is reduced, there is little interaction between the flows inside and outside cavity, and the flow changed by the cavity is rapidly recovered at the following crest. A stable vortex is formed inside a cavity in the case of drag reduction. This vortex generates negative skin friction drag at the cavity bottom wall. Although there is form drag due to the cavity itself, total drag is reduced due to the negative skin friction drag.

  • PDF

유체윤활영역에서 패턴의 모양비율에 따른 마찰 저감효과 (Effect of the Texture Shape Aspect Ratio on Friction Reduction in a Hydrodynamic Lubrication Regime)

  • 이대훈;박상신;고태조;심재술
    • 한국기계가공학회지
    • /
    • 제16권2호
    • /
    • pp.63-68
    • /
    • 2017
  • Friction occurs when surfaces that are in contact move relatively between solid surfaces, fluid layers, and materials slide against one another. This friction force causes wear on the contact surface, generates unwanted heat and leads to performance degradation. Thus, much research has been performed to avoid friction reduction. Among these studies, a textured surface that has micro patterns on the surface has drawn attention for its ability to reduce friction. A mathematical model is developed in this study to examine friction reduction due to the texture of a surface. Numerical simulations are carried out with respect to various factors such as the shape aspect ratio and texture depth of a diamond-shaped texture in the hydrodynamic lubrication regime. As a result, a shape aspect ratio of 1 is best for friction reduction.

가솔린기관의 밸브트레인 마찰특성 (A Study on the Friction Force Onaracteristics of Valve Train System in Gasoline Engine)

  • 윤정의;이만희;김재석
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제28회 추계학술대회
    • /
    • pp.30-37
    • /
    • 1998
  • It is well known that reduction of friction loss due to the valve train system greatly affects on improvement of fuel economy in internal combustion engine. In order to investigate friction characteristics of valve train system we carried out friction force measurement using test rig developed by ourselves. From test results, we concluded that characteristics of lubrication and friction torque on the valve train system such as mixed and hydrodynamic was mainly governed the contact type between cam and tappet.

  • PDF

Experimental Investigation on the Drag Reduction for an Axi-symmetric Body by Micro-bubble and Polymer Solution

  • Yoon, Hyun-Se;Park, Young-Ha;Van, Suak-Ho;Kim, Hyung-Tae;Kim, Wu-Joan
    • Journal of Ship and Ocean Technology
    • /
    • 제8권1호
    • /
    • pp.1-9
    • /
    • 2004
  • Experiments on friction drag reduction by injecting polymer (Polyethylene oxide) solution or micro-bubbles were carried out in the cavitation tunnel of KRISO. Two different drag reduction mechanisms were applied to a slender axi-symmetric body to measure the total drag reduction. And then the amount of friction drag reduction was estimated under the assumption that the reduction mechanisms were effective only to the friction drag component. As the result of the tests, polymer solution drag reduction up to 23% of the total drag was observed and it corresponds to about 35% of the estimated friction drag of the axi-symmetric body. This result matched reasonably well to that of the flat plate test "(Kim et al, 2003)". The normalization of the controlling parameters was tried at the end of this paper. Micro-bubble drag reduction was within 1% of its total drag. This unexpected result was quite different from that of the flat plate case "(Kim et at, 2003)" The possible reasons were discussed in this paper.

회전 라이너를 이용한 엔진 마찰저감 (Engine Friction Reduction Through Liner Rotation)

  • 주신혁;김명진;;전광민
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.31-38
    • /
    • 2006
  • Cylinder liner rotation is a new concept for reducing piston assembly friction in the internal combustion engine. The purpose of cylinder liner rotation is to reduce the occurrence of boundary and mixed lubrication friction in the piston assembly. This paper reports the results of experiments to quantify the potential of the rotating liner engine. A GM Quad-4 SI engine was converted to single cylinder operation and modified for cylinder liner rotation. The hot motoring method was used to compare the friction loss between the baseline engine and the rotating liner engine. Additionally, tear-down tests were used to measure the contribution of each engine component to the total friction torque. The cycle-averaged motoring torque of the RLE represents a $23\~31\%$ friction reduction compared to the baseline engine for hot motoring tests. Through tear down tests, it was found that the piston assembly friction of the baseline engine is reduced from $90\%$ at 1200 rpm to $71\%$ at 2000 rpm through liner rotation.

포토리소그라피를 이용한 마이크로 딤플의 밀도에 따른 마찰 특성 (Friction Characteristics for Density of Micro Dimples Using Photolithography)

  • 김석삼;채영훈
    • 대한기계학회논문집A
    • /
    • 제29권3호
    • /
    • pp.411-417
    • /
    • 2005
  • Surface texturing of tribological application is another attractive technology of friction reducing. Also, reduction of friction is therefore considered to be a necessary requirement for improved efficiency of machine. In this paper attempts to investigate the effect of density for micro-scale dimple pattern using photolithography on bearing steel flat mated with pin-on-disk. We demonstrated the lubrication mechanism for a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. It is found that friction coefficient is depended on the density of surface pattern. It was thus verified that micro-scale dimple could affect the friction reduction considerably under mixed and hydrodynamic lubrication conditions from based on friction map. Lubrication condition regime has an influence on the friction coefficient induced the density of micro dimple.

혼합 및 유체윤활하에서 Micro-Scale Dimple Pattern의 마찰특성 (Friction Characteristics of Micro-scale Dimple Pattern under Mixed and Hydrodynamic Lubrication Condition)

  • 채영훈;김석삼
    • 한국정밀공학회지
    • /
    • 제22권2호
    • /
    • pp.188-193
    • /
    • 2005
  • Surface texturing of tribological application is another attractive technology of friction reducing. Also, reduction of friction is therefore considered to be a necessary requirement for improved efficiency of machine. In this paper attempts to investigate the effect of density for micro-scale dimple pattern on bearing steel flat mated with pin-on-disk. We demonstrated the lubrication mechanism for a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. It is found that friction coefficient is depended on the density of surface pattern. It was thus verified that micro-scale dimple could affect the friction reduction considerably under mixed and hydrodynamic lubrication conditions from based on friction map. Lubrication condition regime has an influence on the friction coefficient induced the density of micro dimple.

Friction Behavior of Micro-scale Groove Surface Patterns Under Lubricated Sliding Contact

  • Chae Young-Hun
    • KSTLE International Journal
    • /
    • 제6권2호
    • /
    • pp.51-57
    • /
    • 2005
  • Surface texturing of tribological applications is an attractive technology of engineered surface. Therefore, reduction of friction is considered to be necessary for improved efficiency of machines. The current study investigated the potential of textured micro-scale grooves on bearing steel flat mated with pin-on-disk. We discuss reducing friction due to the influence of sliding direction at surface pattern. We can indicate lubrication mechanism as a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for the lubrication condition. It was found that the friction coefficient was changed by the surface pattern and sliding direction, even when surface pattern was the same. It was thus verified that micro-scale grooves could affect the friction reduction considerably under mixed and hydrodynamic lubrication conditions. The lubrication regime influences the friction coefficient induced by the sliding direction of groove pattern. The friction coefficient depends on a combination of resistance force and hydrodynamic.