• Title/Summary/Keyword: Reduction of Shear Strength

Search Result 372, Processing Time 0.025 seconds

Static behavior of stud shear connectors with initial damage in steel-UHPC composite bridges

  • Qi, Jianan;Tang, Yiqun;Cheng, Zhao;Xu, Rui;Wang, Jingquan
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.413-421
    • /
    • 2020
  • For steel-concrete girders made composite using shear studs, initial damage on studs induced by weld defect, unexpected overloading, fatigue and others might degrade the service performance and even threaten the structural safety. This paper conducted a numerical study to investigate the static behavior of damaged stud shear connectors that were embedded in ultra high performance concrete (UHPC). Parameters included damage degree and damage location. The material nonlinear behavior was characterized by multi-linear stress-strain relationship and damage plasticity model. The results indicated that the shear strength was not sensitive to the damage degree when the damage occurred at 2/3d (d is the stud diameter) from the stud root. An increased stud area would be engaged in resisting shear force as the distance of damage location from stud root increased and the failure section becomes inclined, resulting in a less reduction in the shear strength and shear stiffness. The reduction factor was proposed to consider the degradation of the shear strength of the damaged stud. The reduction factor can be calculated using two approaches: a linear relationship and a square relationship with the damage degree corresponding to the shear strength dominated by the section area and the nominal diameter of the damaged stud. It was found that the proposed method is preferred to predict the shear strength of a stud with initial damage.

Shear strength of match-cast-free dry joint in precast girders

  • Jiang, Haibo;Feng, Jiahui;Xiao, Jie;Chen, Mingzhu;Liang, Weibin
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.161-173
    • /
    • 2020
  • Shear keys in precast concrete segmental bridges (PCSBs) are usually match-casting which is very labour intensive. In this research, an innovative match-casting-free construction was proposed by leaving small gap between the convex and the concave castellated shear keys in the joints of PCSBs. Specimen experiment, shear strength analysis and numerical simulation were conducted, investigating the loading performance of this new type of dry joints, the gap dry joints. Compared with match-casting joint specimens, it has been found from experiment that shear capacity of gap joint specimens significantly decreased ranging from 17.75% to 42.43% due to only partially constrained and contacted in case of gap dry joints. Through numerical simulation, the effects of bottom contacting location, the heights of the gap and the shear key base were analyzed to investigate strength reduction and methods to enhance shear capacity of gap joint specimens. Numerical results proved that shear capacity of gap dry joints under full contact condition was higher than that under partial contact. In addition, left contact destroyed the integrity of shear keys, resulting in significant strength reduction. Larger shear key base remarkably increased shear capacity of the gap joint. Experimental tests indicated that AASHTO provision underestimated shear capacity of the match-casting dry joint specimens, while the numerical results for the gap dry joint showed that AASHTO provision underestimated shear capacity of full contact specimens, but overestimated that of left contact specimens.

Study of a new type of steel slit shear wall with introduced out-of-plane folding

  • He, Liusheng;Chen, Shang;Jiang, Huanjun
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.229-237
    • /
    • 2020
  • The steel slit shear wall (SSSW), made by cutting vertical slits in a steel plate, is increasingly used for the seismic protection of building structures. In the domain of thin plate shear walls, the out-of-plane buckling together with the potential fracture developed at slit ends at large lateral deformation may result in degraded shear strength and energy dissipation, which is not desirable in view of seismic design. To address this issue, the present study proposed a new type of SSSW made by intentionally introducing initial out-of-plane folding into the originally flat slitted plate. Quasi-static cyclic tests on three SSSWs with different amplitudes of introduced out-of-plane folding were conducted to study their shear strength, elastic stiffness, energy dissipation capacity and buckling behavior. By introducing proper amplitude of out-of-plane folding into the SSSW fracture at slit ends was eliminated, plumper hysteretic behavior was obtained and there was nearly no strength degradation. A method to estimate the shear strength and elastic stiffness of the new SSSW was also proposed.

Static behaviour of lying multi-stud connectors in cable-pylon anchorage zone

  • Lin, Zhaofei;Liu, Yuqing;He, Jun
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1369-1389
    • /
    • 2015
  • In order to investigate the behaviour of lying multi-stud connectors in cable-pylon anchorage zone, twenty-four push-out tests are carried out with different stud numbers and diameters. The effect of concrete block width and tensile force on shear strength is investigated using the developed and verified finite element model. The results show that the shear strength of the lying multi-stud connectors is reduced in comparison with the lying single-stud connector. The reduction increases with the increasing of the number of studs in the vertical direction. The influence of the stud number on the strength reduction of the lying multi-stud connectors is decreased under combined shear and tension loads compared with under pure shear. Yet, due to multi-stud effect, they still can't be ignored. The concrete block width has a non-negligible effect on the shear strength of the lying multi-stud connectors and therefore should be chosen properly when designing push-out specimens. No obvious difference is observed between the strength reductions of the studs with 22 mm and 25 mm diameters. The shear strengths obtained from the tests are compared with those predicted by AASHTO LRFD and Eurocode 4. Eurocode 4 generally gives conservative predictions of the shear strength, while AASHTO LRFD overestimates the shear strength. In addition, the lying multi-stud connectors with the diameters of 22 m and 25 mm both exhibit adequate ductility according to Eurocode 4. An expression of load-slip curve is proposed for the lying multi-stud connectors and shows good agreement with the test results.

A study of the gradient establishment for Rock slope considering joints characteristics. (절리 특성을 고려한 암반사면의 절취경사 기준 설정에 관한 연구)

  • 이수곤;김부성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.501-508
    • /
    • 2002
  • The percentage of a mountainous district in our country is comparatively high but the concern for rock mass has been disregarded for a long time. Especially for rock slope, the most important factors are geometric characteristics and their shear strength parameter. In this paper, parametric studies are performed using the distinct element computer program UDEC-BB for rock slopes. Parameters adopted in this paper are joint angle, spacing, persistence, aperture and shear strength parameters (JRC, JCS, basic friction angle). To estimate slope stability, shear strength reduction method is used. The most important factors affecting rock slope stability are joint angle and spacing. The relationship between average displacement calculated by UDEC-BB and safe factor by shear strength reduction method is researched.

  • PDF

Analysis Study on Ultimate Strength of Single-shear Bolted Connections with Austenitic Stainless Steel(STS201) with Varied End and Edge distances (연단거리를 변수로 갖는 오스테나이트계 스테인리스강(STS201) 일면전단 볼트접합부의 최대내력에 관한 해석연구)

  • Cha, Eun-Young;Hwang, Bo-Kyung;Lee, Hoo-Chang;Kim, Tae-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.1-11
    • /
    • 2017
  • This study focused on the ultimate behaviors(ultimate strength and fracture mode ) of single shear bolted connection with austenitic sainless steel(STS201) and curling effect on the ultimate strength using finite element analysis based on test results. Main variables are end distance in the parallel direction to loading and edge distance in the perpendicular direction to loading. The validation of finite element analysis procedures was verified through the comparisons of ultimate strength, fracture mode and curling(out-of-plane deformation) occurrence between test results and numerical predictions. Curling was observed in both test and analysis results and it reduced the ultimate strength of single- shear bolted connections with relatively long end distances. Strength reduction ratios caused by curling were estimated quantitatively by maximum 19%, 32%, respectively for specimens with edge distance, 48 mm and 60 mm compared with strengths of uncurled connections with restrained out-of-plane deformation. Finally, analysis strengths were compared with current design strengths and it is found that design block shear equations did not provide the accurate predictions for bolted connections with strength reduction by curling.

A Study on Strength of shear Connectors in Composite Beams of Steel and Lightweight Concrete Slabs with Deck Plate (덱크플레이트를 사용한 경량콘크리트 슬래브와 철골보의 합성보에서 쉬어코넥터의 내력에 관한 연구)

  • 김종식;박성무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.293-298
    • /
    • 1995
  • The strength of shear connectors embedded in lightweight concrete slab with deck plate is influenced by various factors of deck plate, shear conncetor and concrete. Generally, it is reported that the strength of shear connector in lightweight concrete decreases in comparison with that in normal concrete. So this paper is to use compressive strength of lilghtweight concrete, width-height ratio of deck plate, and cross sectional area of shear conncetor as variables, to evaluate the strength of shear conncetors in composite beam of steel and lilghtweight concrete slabs with deck plate, and then to suggest the reasonable strength equation by comparing the push-out test results with establixhed strength formula. As the result of 24 specimens test, in case of lightweight concrete slab with deck plate, it has showed that in the same strength, the strength of shear connector decreased about 10~20% in comparison with that in normal concrete. In spite of lightweight concrete, the test results were closely approached the established strength formula of shear connector using Fisher's reduction coefficient.

  • PDF

Prediction of Shear Strength in High-Strength Concrete Beams Considering Size Effect (크기효과를 고려한 고강도 콘크리트 보의 전단강도 예측식 제안)

  • 배영훈;윤영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.878-883
    • /
    • 2003
  • To modify some problems of ACI shear provisions, ultimate shear strength equation considering size effect and arch action to compute shear strength in high-strength concrete beams without stirrups is presented in this research. Three basic equations, namely size reduction factor, rho factor, and arch action factor, are derived from crack band model of fracture mechanics, analysis of previous some shear equations for longitudinal reinforcement ratio, and concrete strut described as linear function in deep beams. Constants of basic equations are determined using statistical analysis of previous shear testing data. To verify proposed shear equation for each variable, namely d, , ρ, f/sub c/' and aid, about 250 experimental data are used and proposed shear equation is compared with ACI 318-99 code, CEB-FIP Model code, Kim & Park's equation and Zsutty's equation. While proposed shear equation is simpler than other shear equations, it is shown to be economical predictions and reasonable safety margin. Hence proposed shear strength equation is expected to be applied to practice shear design.

  • PDF

Shear Strength Reduction Ratio of Reinforced Concrete Shear Walls with Openings (개구부를 갖는 철근콘크리트 전단벽의 전단강도 저감률)

  • Bae, Baek-Il;Choi, Yun-Cheul;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.451-460
    • /
    • 2010
  • There are many types of remodeling, however, engineers and architectures preferred to merge two or more separate units to one very spacious unit. Performing this type of remodeling, in the case of wall dominant apartments, requires partial removal of structural wall causing a concern of structural integrity. However, there are insufficient studies about partial removal, that is, openings. Presently, ACI standard have no clear way to evaluate the effect of opening on the structural wall. AIJ has the provision about strength reduction factor '$\gamma$'. However, this reduction factor cannot exactly evaluate the reduction effect of openings because this factor '$\gamma$' was determined through the elastic analysis. Therefore, in this study, 2 structural wall specimens were tested and many test results from previous studies were collected. Using these data, this study performed statistical analysis about strength of structural wall which have the opening in wall panel. And this study performed parametric study verifying shear strength reducing effect by opening area. In the results of statistical study, previous reduction factor show very conservative results because this equation did not consider other factors, reinforcement ratio and aspect ratio of openings, which was affect the shear strength of shear walls. Therefore we performed parametric study based on the test data and suggest new equation for shear strength reduction factor '$\gamma$'.

On the Weight Reduction of Longitudinal Members of Mid-Sized Bulk Carrier Considering the Minimum Shear Force according to Compartment Arrangement based on H-CSR (구획배치에 따른 최소 전단력을 고려한 H-CSR 기반 중형 살물선 종강도 부재의 중량 절감 방안 연구)

  • Na, Seung-Soo;Song, Ha-Cheol;Jeong, Sol;Park, Min-Cheol;Bae, Sang-Don
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.352-359
    • /
    • 2017
  • Because the Energy Efficiency Design Index(EEDI) came into effect in 2013, it is necessary to develop a new technology to overcome $CO_2$ emission regulations. In structural design viewpoint, lots of researches are carried out to develop eco-friendly and high fuel efficiency ships by weight reduction. By using the automated compartment arrangement system and automated structural design algorithm which were developed by the authors, new researches are performing to combine the above two systems. However, the effect of weight reduction was not significant because structural designs by using these systems for the midship part was carried out only focused on the minimum still water bending moment. In this paper, at first, good compartment arrangements which give the minimum still water bending moment and(or) shear force were chosen by using the automated compartment system. And then, influence of shear force on weight reduction was investigated by using the automated structural design algorithm considering longitudinal strength, local strength and shear strength of longitudinal members in cargo holds. Conclusively, it is necessary to consider the minimum still water bending moment and shear force simultaneously to reduce the weight of mid-sized bulk carrier. Also, good compartment arrangement which gives much more weight reduction compared with existing ship was proposed.