• 제목/요약/키워드: Reduction of Energy

검색결과 5,073건 처리시간 0.033초

정량화 시뮬레이션 모델을 활용한 단계적인 건축물에너지효율등급 향상 방안 (Stepwise Technique for Improving Building Energy Efficiency Rating Utilizing Quantified Simulation Model)

  • 김기석;김유민;김종성;오세규
    • KIEAE Journal
    • /
    • 제14권6호
    • /
    • pp.65-73
    • /
    • 2014
  • Due to the Climate change and resource shortage by global warming, various problems are rising and getting worse around the world. Many countries are doing the considerable efforts to reduce greenhouse gas emissions. The government of South Korea also plans to decrease greenhouse gas emission, the various pilot projects are underway, which includes obligation of energy efficiency 1st rating and greenhouse gas target management system of public buildings. In particular, luxurious government office buildings and energy-wasting public building have issued and emerged as a social problem. Energy efficiency improvement of the existing public office buildings are becoming an important issue recently. This study is proposed the step-by-step energy improvement model according to the building energy efficiency rate in order to reduce the energy consumption. To attain this end, I set up a base model by analyzing the current architectural conditions of the existing public office buildings and grasped the specific properties of building energy consumption through energy simulations. Furthermore, I suggested phased reduction prototypes for the reduction target of energy consumption by applying the methods of the zero energy building plan. This study is expecting that prototypes would give directions when it comes to planning the implementation policy of phased building plan factors, according the building energy consumption reduction goal in the existing public office buildings which are the subject of building energy target management system.

TPO/R를 이용한 [Fe2O3, WO3]/지지체의 산화, 환원 특성 연구 (Redox Property of the Supported Fe2O3 and WO3 with TPO/TPR)

  • 김재호;강경수;배기광;김영호;김창희;조원철;박주식
    • 한국수소및신에너지학회논문집
    • /
    • 제22권4호
    • /
    • pp.443-450
    • /
    • 2011
  • The three-reactor chemical-looping process (TRCL) for the production of hydrogen from natural gas is attractive for both $CO_2$ capture and hydrogen production. In this study, redox property of $Fe_2O_3$ and $WO_3$ supported with $ZrO_2$ and $MgAl_2O_4$ were studied with temperature programmed oxidation/reduction (TPO/R) experiment. All metal oxides were prepared by ball mill method. Metal oxides supported with $ZrO_2$ showed the good redox property in TPO and TPR tests. Reduction behavior was matched well the theoretical reduction mechanism. Metal oxides supported with $MgAl_2O_4$ formed a solid solution ($MgFe_{0.6}Al_{1.4}O_4$, $MgWO_4$). $Fe_2O_3$ showed more narrow reaction range and lower reaction temperature than $WO_3$.

고분자전해질 연료전지용 20% Pt/C 캐소드 촉매 제조 및 산소환원반응 평가 (Synthesis and Oxygen Reduction Reaction Evaluation of 20% Pt/C for Polymer Electrolyte Fuel Cell)

  • 김진환;강석민;;류호진
    • 대한금속재료학회지
    • /
    • 제47권7호
    • /
    • pp.454-459
    • /
    • 2009
  • In order to commercialize Polymer Electrolyte Fuel Cell (PEFC), the cathode catalyst such as Platinum supported Carbon (Pt/C) need to have a high activity of Oxygen Reduction Reaction (ORR). In this study, the 20% Pt/C was synthesized using the chemical reduction method while the crystallinity of Platinum (Pt) particles were controlled under heat treatment conditions. The activity of synthesized Pt catalysts was evaluated using electrochemical measurement. Compared with the $i_{ORR}$ at 0.8 V of 20% Pt/C heat-treated at $500^{\circ}C$ and the 20% Pt/C that were not heated and commercial 20% Pt/C, the $i_{ORR}$ at 0.8 V of 20% Pt/C heattreated at $500^{\circ}C$ was 9.5 and 1.7 times higher than those of the 20% Pt/C and commercial 20% Pt/C that were not heated. It was considered that the crystallinity and particle size affect the ORR activity of the Pt/C catalysts.

Concepts of heat dissipation of a disposal canister and its computational analysis

  • Minseop Kim;Minsoo Lee;Jinseop Kim;Seok Yoon
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4173-4180
    • /
    • 2023
  • The stability of engineered barriers in high-level radioactive waste disposal systems can be influenced by the decay heat generated by the waste. This study focuses on the thermal analysis of various canister designs to effectively lower the maximum temperature of the engineered barrier. A numerical model was developed and employed to investigate the heat dissipation potential of copper rings placed across the buffer. Various canister designs incorporating copper rings were presented, and numerical analysis was performed to identify the design with the most significant temperature reduction effect. The results confirmed that the temperature of the buffer material was effectively lowered with an increase in the number of copper rings penetrating the buffer. Parametric studies were also conducted to analyze the impact of technical gaps, copper thickness, and collar height on the temperature reduction. The numerical model revealed that the presence of gaps between the components of the engineered barrier significantly increased the buffer temperature. Furthermore, the reduction in buffer temperature varied depending on the location of the gap and collar. The methods proposed in this study for reducing the buffer temperature hold promise for contributing to cost reduction in radioactive waste disposal.

고순도 수소 생성을 위한 SIP법에서 첨가제에 따른 환원 특성 (Characteristics of Redox Agent with Additive in Steam-Iron Process for the High Purity Hydrogen Production)

  • 전법주;김선명;박지훈
    • 한국수소및신에너지학회논문집
    • /
    • 제22권3호
    • /
    • pp.340-348
    • /
    • 2011
  • Effects of various inorganic-metal oxide (Zr, Zn, Si, Al and Ca as promoters and stabilizers) additive on the reduction rate of iron oxide and the composition of forming hydrogen using the steam-iron cycle operation was investigated. The reduction rate of redox agent with additive was determined from weight change by TGA. The changes of weight loss and reduction rate according to redox agent with various additive affected the hydrogen purity and cycle stability of the process. The cyclic micro reactor showed that hydrogen purity exceeding 95% could be obtained by the water splitting with Si/Fe, Zn/Fe, Zr/Fe redox agents. The redox agents with these elements had an affect on redox cycle stability as a good stabilizer for forming hydrogen by the steam-iron process.

함철 폐기물의 용융환원 공정에 관한 분석연구 (An Analysis of Simulation Model for Smelting Reduction Process of Waste Containing Iron Oxide)

  • Dong-Joon Min
    • 자원리싸이클링
    • /
    • 제5권4호
    • /
    • pp.17-24
    • /
    • 1996
  • The computer simulation model was established to verify the applicability of smelting reduction concept to treatment of industrial wastes which becomes issue on the enviromental and recycling view point. Computer simulation model provides as following results. The increase of post combustion ratio(PCR) and heat transfer efficiency of PC energy(HTE) is effective ways to save energy. But, in order to increase PCR, recovery efficiency of post combustion energy(HTE) have to be higher than 85% HTE considering refractory life and saving energy together. Coke is most useful fuel source because it shows lowest dependence of PCR and low hydrogen content. The quality of hot metal of current process would be expected to the similar level with that of blast furnace. The utilization of scrap and Al dross can be also possible to maximize the advantages of current process which is high temperature and chemical dilution with hot metal and slag. In case of scrap, energy consumption was slightly increases because of heating up energy of scrap. Consquently, current process concept provides the possibility of intergrating recycles of industrial wastes materials such as EAF slag, coke oven dust, life terminated acidic refractory, aluminium dross and scrap by smelting reduction process.

  • PDF

진동에너지에 의한 산화질소 분자(NO)의 음이온(NO-)으로의 환원반응에 관한 연구 (A Study on the Reduction of Nitric Oxide Molecule (NO) to Nitroxyl Anion (NO-) by Vibrational Energy)

  • 조선욱
    • 대한화학회지
    • /
    • 제46권1호
    • /
    • pp.14-18
    • /
    • 2002
  • 산화질소 분자(NO)가 전자 한 개를 받아 산화질소 음이온$(NO^-)$으로 환원되는 반응의 정도가 진동에너지에 따라 크게 달라질 수 있음을 제시하였다. NO와 $NO^-$의 포텐샬에너지 표면은 진동에너지가 많아짐에 따라 NO 분자가 전자를 받아 $NO^-$음이온으로 바뀔수 있는 에너지적 측면을 가짐을 보여준다. 또한, 진동 파동함수간의 Franck-Condon 인자를 계산하였다. 진동에너지가 많아지면 NO에서 $NO^-$로 바뀔 경로가 더 많이 증가함을 보인다. 이 결과는 NO 분자에게 적절한 빛을 조사시킴으로 $NO^-$이온으로의 환원반응속도를 조절할 수 있음을 의미한다.

아파트 건물에서 재실자 활동량이 고려된 PMV제어에 따른 연간 국가 차원의 1차 에너지 및 온실가스 감축량 분석 (Nationwide Reduction of Primary Energy and Greenhouse Gas Emission by PMV Control Considering Individual Metabolic Rate Variations in Apartments)

  • 홍성협;도성록;이광호
    • 대한건축학회논문집:구조계
    • /
    • 제34권10호
    • /
    • pp.37-44
    • /
    • 2018
  • In this study, the effects of considering hourly metabolic rate variations for predicted mean vote (PMV) control on the heating and cooling energy and greenhouse gas emission were investigated. The case adopting PMV control taking the hourly metabolic rate into account was comparatively analyzed against the conventional dry-bulb air temperature control, using a detailed simulation technique. Under the assumption that all the apartments in Korea adopt the PMV control incorporating real-time metabolic rate measurements, nationwide reductions of primary energy and greenhouse gas emission were analyzed. As a result, PMV control considering hourly metabolic rate variations is expected to reduce national primary energy by 6.2% compared to conventional dry-bulb air temperature control, corresponding to reduction of 10,342 GWh. In addition, it turned out that 6.6% of tCO2 emission can be reduced by adopting PMV control, corresponding to nationwide reduction of greenhouse gas emission by approximately 1,720,000 tCO2.

고 에너지 볼 밀링을 통한 Co-ferrite 제조 및 열적 환원에 대한 연구 (A Study on the Synthesis of Co-ferrite by High-energy Ball Milling and Thermal Reduction Characteristics)

  • 조미선;김우진;김창희;강경수;김영호;박주식
    • 한국수소및신에너지학회논문집
    • /
    • 제17권3호
    • /
    • pp.309-316
    • /
    • 2006
  • Co-ferrite was synthesized by HEBM (High Energy Ball Milling) with a stoichiometric (Co/Fe=0.5/2.5) mixture of CoO and $Fe_2O_3$ powders. The effect of milling time on the phase transformation of the mixture was investigated by XRD. Mono-phase solid solution of Co-ferrite, which was milled for 4 h and then calcined at $900^{\circ}C$ in the Ar atmosphere, was confirmed by XRD analysis. The composition and thermal reduction behavior of Co-ferrite were analyzed by TGA and XRF. As a result, oxygen deficient Co-ferrite was synthesized by HEBM and the weight decrease of the Co-ferrite, which was oxidized at $600^{\circ}C$ for 10h by $H_2O$ vapor, was 2.41 wt% during thermal reduction at $1300^{\circ}C$.

Preparation and Characterization of Palladium Nanoparticles Supported on Nickel Hexacyanoferrate for Fuel Cell Application

  • Choi, Kwang-Hyun;Shokouhimehr, Mohammadreza;Kang, Yun Sik;Chung, Dong Young;Chung, Young-Hoon;Ahn, Minjeh;Sung, Yung-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1195-1198
    • /
    • 2013
  • Nickel hexacyanoferrate supported palladium nanoparticles (Pd-NiHCF NPs) were synthesized and studied for oxygen reduction reactions in direct methanol fuel cell. The NiHCF support was readily synthesized by a comixing of $Ni(OCOCH_3)_2$ and equimolar $K_3[Fe(CN)_6]$ solution into DI water under rigorous stirring. After the preparation of NiHCF support, Pd NPs were loaded on NiHCF via L-ascorbic acid reduction method at $80^{\circ}C$. Pd-NiHCF NPs were electrochemically active for oxygen reduction reaction in 0.1 M $HClO_4$ solution. X-ray absorption near edge structure analysis was conducted to measure the white line intensity of Pd-NiHCF to verify the OH adsorption. As a comparison, carbon supported Pd NPs exhibited same white line intensity. This study provides a general synthetic approach to easily load Pd NPs on porous coordination polymers such as NiHCF and can provide further light to load Pd based alloy NPs on NiHCF framework.