• Title/Summary/Keyword: Reduction failure

Search Result 953, Processing Time 0.028 seconds

Effect of Repeated Wet/Dry Cycles of Salt Solution on Flexural Performance of Steel Fiber Reinforced Concrete (반복적 염수침지가 강섬유 혼입 콘크리트의 휨성능에 미치는 영향)

  • Kim, Ji-Hyun;Choi, Yu-Jin;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.553-564
    • /
    • 2022
  • Concrete is a representative composite material that shows excellent performance in the construction field. However, it is a brittle and nonhomogeneous material and exhibits weak behavior against bending and tensile forces. To compensate for such weakens, fiber reinforcement has been utilized, and steel fiber has been recognized as one of the best material for such purpose. However, steel fiber can seriously affect the durability of concrete exposed to the marine environment due to the corrosion caused by chlorine ions. This study intended to evaluate the mechanical performance of steel fiber reinforce concrete during and after repeated wet/dry cycles in salt solution. According to the experimental results, there was no reduction in the relative dynamic modulus of concrete during the repeated wet/dry cycles in salt solution for 37 weeks. Flexural strength was not decreased after completion of repeated wet/dry cycles in salt solution. There was no sign of corrosion in steel fibers after visual observation of fractured surface. However, the flexural toughness was decreased, and this is because about half of the concrete specimen showed failure before reaching the maximum displacement of 3 mm. Although repeated wet/dry cycles in salt solution did not cause cracks in concrete through corrosion of steel fibers, specific attention is required because it can reduce flexural toughness of steel fiber reinforced concrete.

Statistical Techniques to Detect Sensor Drifts (센서드리프트 판별을 위한 통계적 탐지기술 고찰)

  • Seo, In-Yong;Shin, Ho-Cheol;Park, Moon-Ghu;Kim, Seong-Jun
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.103-112
    • /
    • 2009
  • In a nuclear power plant (NPP), periodic sensor calibrations are required to assure sensors are operating correctly. However, only a few faulty sensors are found to be calibrated. For the safe operation of an NPP and the reduction of unnecessary calibration, on-line calibration monitoring is needed. In this paper, principal component-based Auto-Associative support vector regression (PCSVR) was proposed for the sensor signal validation of the NPP. It utilizes the attractive merits of principal component analysis (PCA) for extracting predominant feature vectors and AASVR because it easily represents complicated processes that are difficult to model with analytical and mechanistic models. With the use of real plant startup data from the Kori Nuclear Power Plant Unit 3, SVR hyperparameters were optimized by the response surface methodology (RSM). Moreover the statistical techniques are integrated with PCSVR for the failure detection. The residuals between the estimated signals and the measured signals are tested by the Shewhart Control Chart, Exponentially Weighted Moving Average (EWMA), Cumulative Sum (CUSUM) and generalized likelihood ratio test (GLRT) to detect whether the sensors are failed or not. This study shows the GLRT can be a candidate for the detection of sensor drift.

Analysis of Reinforcement Effect of Steel-Concrete Composite Piles by Numerical Analysis (II) - Bearing Capacity - (수치해석을 이용한 강관합성말뚝의 보강효과 분석 (II) - 지반 지지력 -)

  • Kim, Sung-Ryul;Lee, Si-Hoon;Chung, Moonkyung;Lee, Juhyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.267-275
    • /
    • 2009
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the load-movement relations and the reinforcement effect by the outer steel pipe in the steel-concrete composite pile were analyzed by performing three-dimensional numerical analyses, which can simulate the yielding behavior of the pile material and the elasto-plastic behavior of soils. The parameters analyzed in the study include three pile materials of steel, concrete and composite, pile diameter and loading direction. As the results, the axial capacity of the composite pile was 1.9 times larger than that of the steel pipe pile and similar with that of the concrete pile. At the allowable movement criteria, the horizontal capacity of the composite pile was 1.46 times larger than that of the steel pile and 1.25 times larger than that of the concrete pile. In addition, the horizontal movement at the pile head of the composite pile was about 78% of that of the steel pile and about 53% of that of the concrete pile, which showed that the movement reduction effect of the composite pile was significant and enables the economical design of drilled shafts.

A Study on Non-financial Factors Affecting the Insolvency of Social Enterprises (사회적기업의 부실에 영향을 미치는 비재무요인에 관한 연구 )

  • Yong-Chan, Chun;Hyeok, Kim;Dong-Myung, Lee
    • Journal of Industrial Convergence
    • /
    • v.21 no.11
    • /
    • pp.13-27
    • /
    • 2023
  • This study aims to contribute to the reduction of the failure rate and social costs resulting from business failures by analyzing factors that affect the insolvency of social enterprises, as the role of social enterprises is increasing in our economy. The data used in this study were classified as normal and insolvent companies among social enterprises (including prospective social enterprises) that were established between 2009 and 2018 and received credit guarantees from credit guarantee institutions as of the end of June 2022. Among the collected data, 439 social enterprises with available financial information were targeted; 406 (92.5%) were normal enterprises, and 33 (7.5%) were insolvent enterprises. Through a literature review, eight non-financial factors commonly used for insolvency prediction were selected. The cross-analysis results showed that four of these factors were significant. Logistic regression analysis revealed that two variables, including corporate credit rating and the personal credit rating of the representative, were significant. Financial factors such as debt ratio, sales operating profit rate, and total asset turnover were used as control variables. The empirical analysis confirmed that the two independent variables maintained their influence even after controlling for financial factors. Given that government-led support and development policies have limitations, there is a need to shift policy direction so that various companies aspiring to create social value can enter the social enterprise sector through private and regional initiatives. This would enable the social economy to create an environment where local residents can collaborate to realize social value, and the government should actively support this.

Structural Performance Evaluation of Anchors for Power Equipment Electrical Cabinets Considering On-Site Installation Conditions (현장 설치 조건을 고려한 발전설비 전기 캐비닛 정착부 앵커의 구조성능 평가)

  • Lee, Sang-Moon;Jung, Woo-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.709-719
    • /
    • 2023
  • In general, most of the electrical equipment responsible for control within power plants is housed in self-standing cabinets. These cabinets are typically fixed to a slab using post-installed anchors. Although the fixation method of using post-installed anchors provides stability, there is a risk of conductor failure due to external forces, including moments. However, the performance assessment of current anchors is only evaluated through uniaxial material tests. Therefore, the primary purpose of this study is to compare the static performance of post-installed anchors, considering on-site installation conditions, with their performance in material tests and to analyze the behavioral characteristics of the anchors. While conducting experiments using actual cabinets would be ideal, practical and spatial constraints make this approach difficult. As an alternative, experiments were conducted using a test specimen consisting of a steel column and a support. As a result, the pull-out performance of anchors reflecting on-site installation conditions was measured to be about 10% higher than that observed in material tests. The trends in load reduction and the point of maximum performance for the anchors also differed. To verify the reliability of the experimental study, a 3D FEM analysis was performed, which will provide predictive information on the loads transferred to the post-installed anchors for structural performance evaluations of electrical cabinets using shaking table test in the future.

A Study on the Quality Control Plan for Waterproof Construction in Apartment Houses (공동주택 방수공사 품질관리 방안 마련에 관한 연구)

  • Kim, Kwang-Ki;Kim, Byoungil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.109-120
    • /
    • 2024
  • For successful waterproofing construction, it is very important to secure construction quality as well as material performance of waterproofing materials used in construction. Due to the long-term cost reduction policy following the economic downturn in the construction market, most construction companies are using general low-priced waterproof materials rather than high-quality waterproof materials without clear quality control standards. Without clear education on construction, construction is being carried out with meaning only on construction activities. In addition, the waterproofing method applied in combination is a situation where water leakage occurs due to waterproofing failure due to insufficient construction quality because the construction method is complicated. Therefore, it is necessary to review the quality control measures(design, materials, construction) for successful waterproofing work and improve problems that are derived so that stable waterproofing work can be done. In order to expect the leakage prevention effect of a building, first, it is required to select appropriate materials for each part of the building and environment in the design stage, and the selected materials must satisfy all items of the Korean Industrial Standard(KS). Second, to secure the quality of waterproofing construction, sincere construction by workers is required. In this paper, we tried to describe "review of waterproof design", "constructor education", "site inspection", and "criticism(correction/supplementation)" as quality control measures after material selection.

The Effects of Professional Tooth Cleaning and Plaque Control Instruction on Reduction of Peri-implantitis (전문가치면세정술과 세균막관리교육의 임플란트 주위염 감소 효과)

  • Park, Kyung-Hwa;Han, Gyeong-Soon
    • Journal of dental hygiene science
    • /
    • v.12 no.2
    • /
    • pp.163-170
    • /
    • 2012
  • The purpose of this study was determine the effects of professional tooth cleaning and plaque control instruction(PT & PCI) on reduction of peri-implantitis. A total 80 implant patients were investigated using O'Leary plague index(PI), L${\ddot{o}}$e & Silness gingival index(GI), implant bone loss(BL). While the PT & PCI was conducted by using 'Watanabe method' after scaling for the experimental group, the engine polishing and a plaque control instruction was operated by rolling method after scaling for the control group. The collected data were analyzed with t-test, ANOVA, paired t-test and stepwise multiple regression. PI and GI of the experimental group significantly decreased than the control group(p<0.05). BL, also tended to decreased in the experimental group than the control group(p=0.155). Multiple regression analysis, the factors that was highly correlated with PT & PCI on the PI and GI. According to the implant characteristics, implant location and duration were closely related to PI(p<0.05). Therefore, the PT & PCI is one of the effective methods to reduce the failure caused by the peri-implantitis. Based on this conclusion, that it would be meaningful if the proposed PT & PCI is applied to the oral health management programs of the implant patients.

Internal Fixation of Proximal Humerus Fracture with Polyaxial Angular Stable Locking Compression Plate in Patients Older Than 65 Years (65세 이상의 상완골 근위부 골절 환자에서 다축 각안정 잠김 압박 금속판을 이용한 내고정술)

  • Lee, Ki-Won;Choi, Young-Joon;Ahn, Hyung-Sun;Kim, Chung-Hwan;Hwang, Jae-Kwang;Kang, Jeong-Ho;Choo, Han-Ho;Park, Jun-Seok;Kim, Tae-Kyung
    • Clinics in Shoulder and Elbow
    • /
    • v.15 no.1
    • /
    • pp.25-31
    • /
    • 2012
  • Purpose: The clinical and radiographic outcomes of the internal fixation, which were executed on patients over the age of 65 with proximal humerus fracture by using a polyaxial angular stable locking compression plate (Non-Contact-Bridging proximal humerus plate, Zimmer, Switzerland, NCB), were evaluated. Materials and Methods: Thirty two patients over the age of 65 among the proximal humerus fracture treated with NCB plate, between August 2007 and January 2011, were chosen as the subjects. The average age of patients was 71 years, and the average postoperative follow-up period was 11.5 months. The fractures included 14 two-part and 18 three-part fractures. The clinical results were evaluated, using the visual analog scale (VAS) score and the Constant score. The radiological results were evaluated by time to union and Paavolainen method, which measures the neck shaft angle. Results: At the last follow-up examination, the mean VAS score was 3 points and the mean Constant score was 64.5 points, with bone union achieved after the average of 16.2 weeks following the surgery in all the cases. The mean neck shaft angle was 125.9 and 24 cases had good results, while 8 cases had fair results by Paavolainen method, at the last follow-up. There were 1 case of delayed union and cerclage wire failure, and 3 cases of subacromial impingement. There were no complications, such as loss of reduction, nonunion, screw loosening, or avascular necrosis of the humeral head. Conclusion: Internal fixation, using a NCB plate, was considered to be an effective surgical method in treating proximal humerus fracture in the elderly patients, on whom the fixation of the fracture and maintenance of reduction are difficult.

Reduction of Electron Contamination Using a Filter for 6MV Photon Beam (6MV 광자선에서 전자오염 감소에 관한 연구)

  • Lee, Choul-Soo;Yoo, Myung-Jin;Yum, Ha-Yong
    • Radiation Oncology Journal
    • /
    • v.15 no.2
    • /
    • pp.159-165
    • /
    • 1997
  • Purpose : Secondary electrons generated by interaction between Primary X-rar beam and block tray in megavoltage irradiation, result in excess soft radiation dose to the surface layer To reduce the surface dose from the electron contamination, electron filters were attached under the tray when a customized block was used. Materials and Methods : Cu, Al or Cu/Al combined Plate with different thickness was used as a filter and the surface dose reduction was measured for each case. The measurement to find optimal filter was performed with $10m\times10cm$ field size and 78.5cm source to surface distance. The measurement points are positioned with 2mm intervals from surface to maximum build-up point. To acquire the effect of field size dependence on optimal electron filter, the measurement was performed from $4cm\times4cm\;to\;25cm\times25cm$ field sizes. Results : The surface dose was slowly increased by increasing irradiation field but rapidly increased beyond $15cm\times15cm$ field size. Al plate was found to be inadequate filter because of the failure to have surface dose kept lowering than the dose of deep area. Cu 0.5mm plate and Cu/Al=0.28mm/1.5mm combined plate were found to be optimal filters. By using these 2 filters, the absorbed dose to the surface layer was effectively reduced by $5.5\%,\;11.3\%,\;and\;22.3\%$ for the field size $4cm\times4cm,\;10m\times10cm,\;and\;25cm\times25cm$, respectively. Conclusion : The surface dose attributable to electron contamination had a dependence on field size. The electron contamination was increased when tray was used. Specially the electron contamination in the surface layer was greater when the larger field was used. 0.5mm Cu Plate and Cu/Al=0.28mm/15mm combined plates were selected as optimal electron filters. When the optimal electron filter was attached under the tray, excessive surface dose was decreased effectively The effect of these electron filters was better when a larger field was used.

  • PDF

A Study on the Effect of Applying Water Seepage Lowering Method Using Swelling Waterstop for Expansion Joint in the Concrete Dam (콘크리트 댐에서 수축이음부의 수팽창성 차수재를 이용한 침투저감 공법 적용효과 연구)

  • Han, Kiseung;Lee, Seungho;Kim, Sanghoon;Kim, Sejin;Pai, Sungjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.10
    • /
    • pp.21-29
    • /
    • 2021
  • Most concrete gravity-type dams in and out of the country were constructed by column method to control cracks caused by concrete hydration heat generated during construction, resulting in a certain level of leakage after impoundment through various causes, such as contraction joints and construction joints. However, due to the characteristics of concrete structures that shrink and expand according to temperature, concrete dams have vertical joints and drains to allow penetration. PVC waterproof shows excellent effects in completion of the dam, which however increases the possibility of interfacial failure due to different thermal expansion. Other causes of penetration may include problems with quality control during installation, generation of cracks due to heat of hydration of concrete, waterproofing methods, etc. In the case of Bohyunsan Dam in Yeongcheon, North Gyeongsang Province, the amount of drainage in the gallery was checked and underwater, and it was confirmed that there are many penetrations from drainage holes connected to vertical joints, and that some of the PVC waterproofs are not fully operated. As a new method to prevent penetration through vertical joints, D.S.I.M. (Dam Sealing Innovation Method) developed by World E&C was applied to Bohyunsan Dam and checked the amount of drainage in the gallery. As a result of first testing three most leaking vertical joints, the drain in the gallery was reduced by 87% on the average and then applied to the remaining 13 locations, which showed a 83% reduction effect based on the total drain in the gallery. Summing up these results, it was found that D.S.I.M. preventing water leakage from the upstream face is a valid construction method to reduce the water see-through and penetration quantity seen in downstream faces of concrete dams. If D.S.I.M. is applied to other concrete dams at domestic and abroad, it is expected that it will be very effective to prevent water leakage through vertical joints that are visible from downstream faces.