• Title/Summary/Keyword: Reduction amount of $CO_2$

Search Result 378, Processing Time 0.031 seconds

A Case Study of GHG Reduction Based on Electricity Consumption Pattern of Individual Rooms : In case of Seoul National University (실별 전력 소비패턴에 의거한 온실가스 감축 잠재량 산정 - 서울대학교 관악 캠퍼스를 대상으로 -)

  • Kim, Seok-Young;Park, Moonseo;Lee, Hyun-Soo;Kim, Sooyoung;Jung, Hye-Jin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.4
    • /
    • pp.55-64
    • /
    • 2013
  • As GHG target management is introduced in Korea, designated establishment takes responsibilities to reduce more than 30% of expected GHG emission until 2020. Although decreasing GHG has been requested to universities which consume great amount of energy, there are difficulties to apply high cost countermeasures. Therefore, this research suggest a low cost, easily-applicable energy saving method, and derive potential GHG reduction amount in the case of SNU, Kwan-ak campus. First of all, 11 rooms of different use were chosen as the samples, and energy consumption in each room was measured. Standard models for each room were built through researching on the electric devices in each room. Moreover, energy consumption was computed for each devices through analyzing the pattern of electricity consumption. 32 GHG reduction technology and action program were chosen, and they were applied to the standard models for individual rooms. Through multiplying energy reduction rate of each program to energy consumption of each electric device, maximum energy reduction of each electric device is derived. Through that, Maximum GHG reduction for individual rooms and each month and the total GHG reduction capacity of Kwan-ak campus were computed. It was found out that approximately $5,311tCO_2$-eq can be reduced, when reduction technology and action program suggested by this research are applied. It appeared 24.48% of requested reduction amount to SNU can be reduced, till 2016.

A Study on Improvement and Effect of Carbon Point Program for Residential Buildings in Daegu (대구광역시 주거 건축물의 이산화탄소 배출 감축을 위한 탄소포인트제의 효과 및 개선방향에 관한 연구)

  • Yeo, Myung-Kil;Jeon, Gyu-Yeob;Hong, Won-Hwa;Cho, Woong-Ho
    • Journal of the Korean housing association
    • /
    • v.23 no.4
    • /
    • pp.11-18
    • /
    • 2012
  • The amount of energy consumption in the buildings is approximately 20% of domestic energy consumption. The Carbon Point Program have been published on reduction of greenhouse gas emission in buildings under the paradigm of 'Low Carbon Green Growth'. This study focuses on the effect of 'Carbon Point Program' for residential buildings in Daegu. The amount of electricity and waterwork consumption and information of households were investigated to analyse the effect of carbon point program. The samples are situated in Deagu and are apartment in Bukgu and Suseonggu. The $CO_2$ emission is analysed by factors of energy resource and household organization between before participating and after participating in Carbon Point Program. The participation type has a difference of voluntary participation in Suseonggu and passive participation in Bukgu. Based on this investigation, average amount of $CO_2$ emission was reduced from voluntary participation households but all of them did not. To promote the effect of Carbon Point Program, this study proposes that needing the plans to raise will and activity of reducing carbon and to help participation which have disadvantage against achieving reduction.

A Study on Reduction of Air Conditioning Energy Consumption by Surface Albedo Variation Using Meteorological Model (기상모델을 이용한 지표면 반사능에 따른 냉방에너지 소비 저감 연구)

  • AN, Jae-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.16-24
    • /
    • 2010
  • Recently environmental regulations like the Kyoto Protocol, adopted in 1997, required the 5.2% reduction of the greenhouse gas emission in 1990. And 13th General Assembly in 2007, held in Bali of India, have agreed to duty reduction even in developing countries in 2013. Korean government needs the researches on climate change and the strategic programs for greenhouse gas reduction. In this paper Colorado State University Mesoscale Model(CSU-MM) was applied to simulate the relationship between surface albedo and air temperature. Meteorological model simulation in region of Ansan-City, Shiheung-City showed that mean air temperature became lower with the increase of albedo value. Simulated air temperature became lower $-0.16^{\circ}C$ and $-0.66^{\circ}C$ by 5% and 20% increase of albedo values respectively. And cooling energy saving amount in air conditioning process was calculated according to lowered air temperature. The reduction of air temperature resulted the reduction of air conditioning energy in personal house and commercial buildings. The increase of albedo from 5% to 20% resulted the reduction of air conditioning energy from 44,493 MWh/yr to 183,796 MWh/yr. Additionally the reduction of greenhouse gas emission through the energy saving was calculated after IPCC guideline. In terms of greenhouse gas emission $CO_2$ was reduced form -30,414 ton-$CO_2$/yr to -125,638 ton-$CO_2$/yr according to the reduction of electric energy.

A Study on the Proposal of Building Technologies for Reducing $CO_2$ Emission of Buildings(Focused on the Multi-Family Residential Buildings) (건물의 $CO_2$ 배출 저감 건축기술요소 제안에 관한 연구(공동주택을 중심으로))

  • Lee, Jong-Sik;Kang, Hae-Jin;Park, Jin-Chul;Rhee, Eon-Ku
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.91-96
    • /
    • 2009
  • First, the base model of multi-family residential buildings are selected, and then the $CO_2$ reduction building technologies that are applicable for multi-family residential buildings are induced by analyzing the examples and then an optimal plan for when the $CO_2$ reduction building technologies can be integrated and applied to the base model was formulated. In the results of converting the energy consumption and reduction amount from the building technologies into $CO_2$ emissions to analyze the distribution ratio compared to the entire $CO_2$ emissions; the heat recovery ventilator is 0.5%, the photovoltaic system is $1.9%{\sim}5.9%$, the solar hot water heating system is $6.3%{\sim}13.1%$ and the ge thermal heat-pump system is 39.0% when both heating and hot water heating are applied. An optimally integrated application method for the building technologies is in charge of heating and hot water heating through the geothermal source heat pump system and in charge of the electricity load through the photovoltaic system(45.2%).

  • PDF

A Study on the Optimum Tandem Welding Torch Distance for the Reduction of CO2 Shielding Gas Consumption (Tandem 용접 CO2 보호가스 사용량 감소를 위한 최적 토치 극간거리에 대한 연구)

  • Lee, Jun-Yong;Kim, Ill-Soo;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.294-301
    • /
    • 2012
  • Shipbuilding industry has used a lot of $CO_2$ gas as a shielding gas for arc welding and thus, development of welding equipment which can reduce the amount of $CO_2$ gas is requested widely. Therefore, this study is focused on the examination of optimum welding torch distance of Tandem welding system as a fundamental study for the optimum shape design of torch nozzle. $CO_2$ shielding gas distribution and welding bead shape formation by the torch distance are examined. Results show that according to the torch distance variation, most effective shielding gas layer can be formed and quantitative determination of the optimum torch distance can result in the reduction of $CO_2$ shielding gas consumption.

Lithium Recovery from NCM Lithium Ion Battery by Hydrogen Reduction Followed by Water Leaching (NCM계 리튬이온 배터리 양극재의 수소환원과 수침출에 의한 리튬 회수)

  • So-Yeong Lee;So-Yeon Lee;Dae-Hyeon Lee;Ho-Sang Sohn
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.15-21
    • /
    • 2024
  • The demand for electric vehicles powered by lithium-ion batteries is continuously increasing. Recovery of valuable metals from waste lithium-ion batteries will be necessary in the future. This research investigated the effect of reaction temperature on the lithium recovery ratio from hydrogen reduction followed by water leaching from lithium-ion battery NCM-based cathode materials. As the reaction temperature increased, the weight loss ratio observed after initiation increased rapidly owing to hydrogen reduction of NiO and CoO; at the same time, the H2O amount generated increased. Above 602 ℃, the anode materials Ni and Co were reduced and existed in the metallic phases. As the hydrogen reduction temperature was increased, the Li recovery ratio also increased; at 704 ℃ and above, the Li recovery ratio reached a maximum of approximately 92%. Therefore, it is expected that Li can be selectively recovered by hydrogen reduction as a waste lithium-ion battery pretreatment, and the residue can be reprocessed to efficiently separate and recover valuable metals.

Effects of Mn, Co Additions and Microporosities on the Thermal Expansion Coefficient of powder Rolled Fe-36Ni Invar Strip (분말압연에 의해 제조된 인바(Fe-36Ni)판재의 열팽창 계수에 미치는 미세 기공 및 합금 원소 첨가 효과)

  • 이동원
    • Journal of Powder Materials
    • /
    • v.2 no.3
    • /
    • pp.223-230
    • /
    • 1995
  • The effects of Mn and Co additions up to 0.6 and 2.0 wt% respectively and the amount of cold-rolled reduction on the thermal expansion coefficient (TEC) of powder rolled Fe-Ni Invar strips were investigated. The compacted strips were sintered, homogenized and cold-rolled to the final thickness of 0.8 mm, 0.65 mm and 0.4 mm. All the strips reached full density except the case of 0.8 mm sample which has a very few porosities. The interstitials which are well known to increase TEC were minimized to the level of 10 rpm C,5 and N,0 by the processing. TEC was found to decrease by increasing the cold reduction. The Mn content had little effect on the TEC. But in Fe-Ni-Co system, TEC decreased with Co content up to 0.4 wt% and then increased, yielding the minimum value of $0.2 {\times} 10-6/^{\circ}C$ at 0.4 wt% Co. This value is much lower than that of commercial Invar product. Such effect of Co is considered to be related with the maxiumum spontaneous- magnetostriction effect.

  • PDF

A Study on the Sulfur-Resistant Catalysts for Water Gas Shift Reaction III. Modification of $Mo/γ-Al_2O_3$ Catalyst with Iron Group Metals

  • Park, Jin Nam;Kim, Jae Hyeon;Lee, Ho In
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.12
    • /
    • pp.1233-1238
    • /
    • 2000
  • $Mo/{\gamma}-Al_2O_3catalysts$ modified with Fe, Co, and Ni were prepared by impregnation method and catalytic activity for water gas shift reaction was examined. The optimum amount of Mo loaded for the reaction was 10 wt% $MoO_3$ to ${\gamma}-Al_2O_3.$ The catalytic activity of $MoO_3/{\gamma}-Al_2O_3was$ increased by modifying with Fe, Co, and Ni in the order of Co${\thickapprox}$ Ni > Fe. The optimum amounts of Co and Ni added were 3 wt% based on CoO and NiO to 10 wt% $MoO_3/{\gamma}-Al_2O_3$, restectively. The TPR (temperature-programmed reduction) analysis revealed that the addition of Co and Ni enganced the reducibility of the catalysts. The results of both catalytic activity and TPR experiments strongly suggest that the redox property of the catalyst is an important factor in water gas shift reaction on the sulfided Mo catalysts, which could be an evidence of oxy-sulfide redox mechanism.

Effect of Ginseng Components on Content of Cholesterol and Activity of Acyl CoA.Cholesterol Acyltransferase in Hep G2 Cells Cultured in Cholesterol Rich Medium (고콜레스테를 조건으로 배양한 Hep G2세포의 콜레스테를 함량변동과 Acyl CoA : Cholesterol Acyltransferase의 활성에 미치는 인삼성분의 영향)

  • Park, Song-Chul;Noh, Yun-Hee;Koo, Ja-Hyun
    • Journal of Ginseng Research
    • /
    • v.19 no.3
    • /
    • pp.212-218
    • /
    • 1995
  • A human hepatoma cell line, hep G2, was used to investigate the mechanism of serum cholesterol reduction by ginseng total saponin, ginsenoside-$Rb_1$, - $Rb_2$, and non-saponin fraction (ether extraction). Hep G2 cells were incubated in 10 $\mu\textrm{g}$/ml of cholesterol containing serum free-RPMl1640 medium with various concentration of ginseng components. The amounts of cholesterol in Hep G2 cells were decreased to maximum 51% in total saponin or two ginsenoside-treated groups while there was 137% increase in cholesterol level of control group as compared with that of normal group. Nonsaponin groups did not show the same effect. In order to elucidate the observed changes in the amount of cholesterol, the activity of amyl CoA : cholesterol acyltransferase (ACAT) in groups showing remarkable reduction in cholesterol amount, i.e., total saponin 10-6%, ginsenoside-$Rb_1$ $10^{-4}$%, ginsenoside-$Rb_2$, $10^{-4}$%, and non-saponin fraction $10^{-4}$%, was assayed using [1-$^{-14}C$%]oleic acid as enzyme substrate. The activity of ACAT was increased in all groups tested as compared with that of control group except for non-saponin group cultured in water soluble cholesterol containing medium. The serum cholesterol lowering effects of ginseng components can partially be attributed to the increased hepatocellular ACAT activity.

  • PDF

Greenhouse Gas Emission Reduction and Economic Benefit Evaluation of Carbon Mineralization Technology using CFBC Ash (순환유동층 석탄재를 이용한 탄소광물화 기술의 온실가스 배출 저감량 및 경제성 분석)

  • Jung, Euntae;Kim, Jeongyun
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.40-52
    • /
    • 2022
  • This study analyzed the amount of carbon dioxide reduction and economic benefits of detailed processes of CO2 6,000 tons plant facilities with mineral carbonation technology using carbon dioxide and coal materials emitted from domestic circulating fluidized bed combustion power plants. Coal ash reacted with carbon dioxide through carbon mineralization facilities is produced as a complex carbonate and used as a construction material, accompanied by a greenhouse gas reduction. In addition, it is possible to generate profits from the sales of complex carbonates and carbon credits produced in the process. The actual carbon dioxide reduction per ton of complex carbonate production was calculated as 45.8 kgCO2eq, and the annual carbon dioxide reduction was calculated as 805.3 tonCO2, and the benefit-cost ratio (B/C Ratio) is 1.04, the internal rate return (IRR) is 10.65 % and the net present value (NPV) is KRW 24,713,465 won, which is considered economical. Carbon mineralization technology is one of the best solutions to reduce carbon dioxide considering future carbon dioxide reduction and economic potential.