• Title/Summary/Keyword: Reduction Drive

Search Result 484, Processing Time 0.021 seconds

DC Motor Drive with Circuit Balancing Technique to Reduce Common Mode Conducted Noise

  • Jintanamaneerat, Jintanai;Srisawang, Arnon;Prempraneerach, Yothin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1881-1884
    • /
    • 2003
  • In some requirements of dc motor drive circuit applications are high quality output with generation of low internal conducted EMI. However the conventional dc motor drive circuits have been usually using unbalanced circuit which generates the high conducted EMI to the frame ground. This paper presents a balanced dc motor drive circuit which is effective way to reduce the common-mode noise. The circuit balancing is to make the noise pick up or occurring in both conductor lines, signal path and return path is equal in amplitude and opposite phase so that it will cancel out in the frame ground. The common-mode conducted noise reduction of this proposed dc motor drive is confirmed by experimental results.

  • PDF

MRSF-PWM Method for Acoustic Noise Reduction of Traction Motor Drive Systems (견인전동기 구동시스템의 소음 저감을 위한 MRSF-PWM 방식)

  • 홍순찬;서영민
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.262-271
    • /
    • 2002
  • In PWM inverters used in traction motor drive systems, the switching frequency is restricted by their large power capacity and thus the electromagnetic acoustic noise is generated. To reduce such an audible noise, the new MRSF-PWM(Modified Random Switching Frequency PWM) method is proposed. In the Proposed MRSF-PWM method, both triangular wave and sawtooth wave are used together as carrier waves for harmonic diffusion and reference wave is generated by injecting 3rd harmonic into the stone wave to expand the linear control region of output voltages. To verify the validity of the proposed MRSF-PWM method, computer simulations are carried out. And the results show that the MRSF-PWM method is more excellent than other RPWM methods in the aspects of both linearity and harmonic diffusion md more effective than SPWM(Sinusoidal PWM) method for the reduction of an audible noise.

The Optimal Design of Wear Pads for the Final Reduction Drive in Tactical Vehicles (전술차량용 종감속기 마모패드 최적설계에 관한 연구)

  • Shin, Hunyong;Lee, Yong-Jun;Ryu, Jungmin;Kang, Taewoo;Oh, Dae-san;Sim, Jungwook;Shin, Minsu;Son, Kwon-il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.54-59
    • /
    • 2019
  • The final reduction drive in tactical vehicles has a wear-pad that helps to maintain adequate end floating when the hub assay operates. The input axis and sun gear move repeatedly with the axis when tactical vehicle is operating. The hub assay is designed so that the wear pads won't seize during operation. Seizure of the wear pads during operation results in oil leakage. In our study, the fault mechanism was analyzed to prevent the seizure of the wear pads and an optimal design for the shape and material of the wear-pad was explored. We then observed the changes in temperature, shape, and material of several important parts.

Drive-train Jerk Reduction Control for Parallel Hybrid Electric Vehicles (병렬형 하이브리드 전기자동차 구동계의 Jerk 저감 제어)

  • Park, Joon-Young;Sim, Hyun-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • TMED(Transmission Mounted Electric Device) parallel hybrid configuration can realize EV(Electric Vehicle) mode by disengaging the clutch between an engine and a transmission-mounted motor to improve efficiencies of low load driving and regenerative braking. In the EV mode, however, jerk can be induced since there are insufficient damping elements in the drive-train. Though the jerk gives demoralizing influence upon driving comport, adding a physical damper is not applicable due to constraints of the layout. This study suggests the jerk reduction control, composed of active damping method and torque profiling method, to suppress the jerk without hardware modification. The former method creates a virtual damper by generating absorbing torque in the opposite direction of the oscillation. The latter method reduces impulse on the mated gear teeth of the drive-train by limiting the gradient of traction torque when the direction of the torque is reversed. To validate the effectiveness of the suggested strategy, a series of vehicle tests are carried out and it is observed that the amplitude of the oscillation can be reduced by up to 83%.

A Study on the Reduction of the Torsional Angular Acceleration on Chain Drive Wheel of Marine Diesel Engine

  • Kim, Sang-Jin;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.215-223
    • /
    • 2007
  • When the propulsion shafting system of marine diesel engine is designed. the vibratory stresses on shafts should be reviewed and be satisfied with limits which are laid down by classification societies In addition. the torsional vibration aspects for crankshaft of main engine are requested to be checked by engine designers. Especially. for the 4, 5, and 6-cylinder engines. the 2nd order moment compensator(s) may be installed to compensate the external moments of engine and not to excite the hull girder vibration. This moment compensator which is mounted on fore and/or after-end of engine is driven by the roller chain drive for some of MAN 2-stroke diesel engines. While the engine is running, the roller chain Is worn down, which causes the extension of roller chain. The chain therefore should be checked and tightened by periods in order to keep its functionality. However. when the torsional angular acceleration of chain drive exceeds the certain limit. the chain will suffer the excessive slack and transverse vibration. This may cause fatigue, wear or damage on the chain and the chain ultimately may be broken. The research object of this thesis is to review factors which affect the angular acceleration of chain drive and to find out how to decrease the angular acceleration of driving chain by checking factors which have a major contribution to acceleration reduction using the statistical method of DOE(design of experiment), correlation analysis and regression analysis methods.

A Study on the Shift Motor Driving System Optimization of 4-WD Power Transformation Device (4-WD 동력전환장치의 변속 모터 구동부 최적화에 관한 연구)

  • Youm, Kwang Wook;Ham, Seong Hun;Oh, Se Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1187-1192
    • /
    • 2013
  • In the case of 4 wheel drive (4-WD) type car, power switching occurs to 4-WD by operating lever or switch that operates power switching device attached in transfer case which can operate motor by electric signal. So if the RPM of motor is high, power switching will not exactly occur and can cause damage to gear in transfer case according to circumstances. So in this study, we applied 2 level of planet gear type motor spindle of motor drive part of a power train. And conducted decelerating to increase torque to switch power safe and accurately. Also, we researched efficiency of gear by designing reduction gear ratio and gear type and by calculating contact stress and bending strength. Based on researched content, we made drive head of power switching device and a reduction module which uses type that uses motor spindle as sun gear and ring gear as cover.

A study on Quadrature error Reduction of Design Methodology in a Single Drive 3-Axis MEMS Gyroscope (단일 구동 3축 MEMS자이로스코프의 구적 오차 저감을 위한 설계 기법에 관한 연구)

  • Park, Ji Won;Din, Hussamud;Lee, Byeung Leul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.132-137
    • /
    • 2022
  • In this paper, we have studied the quadrature error reduction for the single drive 3-axis MEMS Gyroscope. There was a limitation of the previous study which is the z-axis quadrature error was large. To reduce this value, design methodologies were presented. And the methodologies included a different mesh application, z-rate spring structure change, and mass compensation for balancing of the structure. We conducted the modal analysis, drive mode analysis and sense mode analysis using COMSOL Multiphysics. As a result, a drive resonant frequency was 26003 Hz, with the x-sense, y-sense, z-sense being 26749 Hz, 26858 Hz, 26920 Hz, respectively. And the Mechanical sensitivity was computed at 2000 degrees per second(dps) input angular rate while the sensitivity for roll, pitch, and yaw was computed 0.011, 0.012, and 0.011 nm/dps respectively. And z-axis quadrature error was successfully improved, 2.78 nm to 0.95 nm, which the improvement rate was about 66 %.

A Design of Position Control System of Switched Reluctance Motor (스위치드 릴럭턴스 전동기의 위치제어 시스템 설계)

  • Kim Min-Huei;Baik Won-Sik;Kim Nam-Hun;Choi Kyeong-Ho;Kim Dong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.249-253
    • /
    • 2004
  • This paper presents an implementation of position control system of Switched Reluctance Motor (SRM) using digital hysteresis controller. Although SRM possess several advantages including simple structure and high efficiency, the control drive system using power semiconductor device is required to drive this motor. The control drive system increases overall system cost. To overcome this problem and increase the application of SRM, it is needed to develope the servo drive system of SRM. So, the position control system of 1 Hp SRM is developed and evaluated by adaptive switching angle control. The position/speed response characteristics and voltage/current waveforms are presented to prove the capability of SRM for a servo drive application. Moreover, digital hysteresis current controller is developed and evaluated by experimental testing for the purpose of system developmental cost reduction.

  • PDF

A Study of the Control Logic Development of Driveability Improvement in Vehicle Acceleration Mode (차량 급가속시 운전성 향상을 위한 제어로직 개선에 관한 연구)

  • 최윤준;송해박;이종화;조한승;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.101-116
    • /
    • 2002
  • Modern vehicles require a high degree of refinement, including good driveability to meet customer demands. Vehicle driveability, which becomes a key decisive factor for marketability, is affected by many parameters such as engine control and the dynamic characteristics in drive lines. Therefore, Engine and drive train characteristics should be considered to achieve a well balanced vehicle response simultaneously. This paper describes analysis procedures using a mathematical model which has been developed to simulate spark timing control logic. Inertia mass moment, stiffness and damping coefficient of engine and drive train were simulated to analyze the effect of parameters which were related vehicle dynamic behavior. Inertia mass moment of engine and stiffness of drive line were shown key factors for the shuffle characteristics. It was found that torque increase rate, torque reduction rate and torque recovery timing and rate influenced the shuffle characteristics at the tip-in condition for the given system in this study.

The Regenerative Drive of Induction Servo Motor by the Flux Acceleration Method (자계벡터 가속법에 의한 유도형 서보전동기의 전력회생 구동)

  • Hong, Soon-Ill;Hong, Jeng-Pyo;Jung, Seoung-Hwan
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2006.06a
    • /
    • pp.77-80
    • /
    • 2006
  • This paper based on spiral vector, three phase induction motor is described a detailed modeling by a phase segment methode. Based on this model, A torque control and the equation of regenerative power for the induction motor drive, based on the field acceleration method(FAM), is presented. The speed control system is designed to be applied voltage source inverters that is easy the current type feedback of power regeneration for motor drive. The ability of shaving power to be measured power regeneration has been investigated in speed acceleration and reduction. And it is change of stator resistance that the voltage commands include error, the ripple of exited voltage and torque occur from the results. The experimental tests verify the performance of the proposed regenerative drive for FAM, proving that good behavior of the drive is achieved in the transient and steady-state operating conditions.

  • PDF