• Title/Summary/Keyword: Reducing Building Energy

Search Result 249, Processing Time 0.023 seconds

Analysis of Potential Reductions of Greenhouse Gas Emissions on the College Campus through the Energy Saving Action Programs

  • Woo, Jeongho;Choi, Kyoung-Sik
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.191-197
    • /
    • 2013
  • Republic of Korea announced the reduction target to be around 30% of business as usual greenhouse gas emissions by 2020. College campuses were ranked at the 5th of high energy consumption areas in the building sectors. Target management scheme was designed to set greenhouse gas emissions target including several college campuses. Previous studies showed the amount of greenhouse gas emissions with several assumptions such as the applications of renewable energy systems and light emitting diode lamps, etc. Long-range Energy Alternatives Planning model was utilized to simulate future greenhouse gas emissions. This study sets standard model labs for energy saving action programs by applying guidance studies. It has been deduced that energy saving action programs was responsible for reducing 949.5 kWh for each standard model lab and the total reduction of all 59 model labs in the Engineering College building has been calculated to 56,020.5 kWh. The objective of the study is to provide guidelines on standard model laboratory for greenhouse gas emissions reduction on the campus.

A Study on Energy Efficiency Plan based on Artificial Intelligence: Focusing on Mixed Research Methodology (인공지능 기반 에너지 효율화 방안 연구: 혼합적 연구방법론 중심으로)

  • Lee, Moonbum;Ma, Taeyoung
    • Journal of Information Technology Services
    • /
    • v.21 no.5
    • /
    • pp.81-94
    • /
    • 2022
  • This study sets the research goal of reducing energy consumption which 'H' University Industry-University Cooperation Foundation and resident companies are concerned with, as well as conducting policy research and data analysis. We tried to present a solution to the problem using the technique. The algorithm showing the greatest reliability in the power of the model for the analysis algorithm of this paper was selected, and the power consumption trend curves per minute and hour were confirmed through predictive analysis while applying the algorithm, as well as confirming the singularity of excessive energy consumption. Through an additional sub-sensor analysis, the singularity of energy consumption of the unit was identified more precisely in the facility rather than in the building unit. Through this, this paper presents a system building model for real-time monitoring of campus power usage, and expands the data center and model for implementation. Furthermore, by presenting the possibility of expanding the field through research on the integration of mobile applications and IoT hardware, this study will provide school authorities and resident companies with specific solutions necessary to continuously solve data-based field problems.

A Study on the Evaluation of the Environmental Impact of Energy Usage in Construction Sites (건설현장 내 에너지 사용량에 따른 환경영향 평가에 관한 연구)

  • Lee, Chung-Won;Tae, Sung-Ho;Jang, Hyeong-Jae;Lim, Hyo-Jin;Kim, Hyeon-Suk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.119-120
    • /
    • 2022
  • As the seriousness of the climate crisis is emphasized, movements to solve it are becoming active. In Korea, efforts to reduce environmental impacts across all industries are being strengthened through the Framework Act on Low Carbon Green Growth. The construction industry predicts the environmental impact of buildings during the entire life cycle, but in the construction process, there is a difference in energy usage depending on the amount of input, and it is difficult to predict the environmental impact if data cannot be collected. Therefore, this study evaluated the environmental impact of energy usage in the apartment construction process as part of the study on predicting and reducing the environmental impact of the construction process of the construction site. To this end, the environmental effects of buildings were set as global warming, resource consumption, and ozone layer effects, and the environmental effects of the actual energy use in the case were evaluated. In addition, based on the evaluation results, the characteristics of the input energy usage were compared and analyzed.

  • PDF

Seismic retrofit of a steel-reinforced concrete hospital building using continuous energy-dissipative steel columns

  • Massimiliano Ferraioli;Biagio Laurenza;Angelo Lavino;Ciro Frattolillo;Gianfranco De Matteis
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.467-488
    • /
    • 2023
  • Seismic retrofit of an existing steel-reinforced concrete hospital building that features innovative use of a continuous energy-dissipative steel column (CEDC) system is presented in this paper. The special system has been adopted to provide an efficient solution taking into account the difficulties of applying traditional intervention techniques to minimize the impact on architectural functionality and avoid the loss of building function and evacuation during the retrofit implementation. The lateral stiffness and strength of the CEDC system were defined based on the geometric and mechanical properties of the steel strip dampers. The hysteretic behavior under cyclic loadings was defined using a simplified numerical model. Its effectiveness was validated by comparing the results of full-scale experimental data available from the literature. All the main design considerations of the retrofitting plan are described in detail. The effectiveness of the proposed retrofitting system was demonstrated by nonlinear time-history analyses under different sets of earthquake-strong ground motions. The analysis results show that the CEDC system is effective in controlling the deformation pattern and significantly reducing damage to the existing structure during major earthquakes.

Multiple wall dampers for multi-mode vibration control of building structures under earthquake excitation

  • Rahman, Mohammad Sabbir;Chang, Seongkyu;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.537-549
    • /
    • 2017
  • One of the main concerns of civil engineering researchers is developing or modifying an energy dissipation system that can effectively control structural vibrations, and keep the structural response within tolerable limits during unpredictable events like earthquakes, wind and any kind of thrust load. This article proposes a new type of mass damper system for controlling wideband earthquake vibrations, called Multiple Wall Dampers (MWD). The basic principle of the Tuned Mass Damper (TMD) was used to design the proposed wall damper system. This passive energy dissipation system does not require additional mass for the damping system because the boundary wall mass of the building was used as a damper mass. The multi-mode approach was applied to determine the location and design parameters of the dampers. The dampers were installed based on the maximum amplitude of modes. To optimize the damper parameters, the multi-objective optimization Response Surface Methodology was used, with frequency response and maximum displacement as the objective functions. The obtained structural responses under different earthquake forces demonstrated that the MWD is one of the most capable tools for reducing the responses of multi-storied buildings, and this system can be practically used for new and existing building structures.

Photovoltaic Application in System Formwork Operations of High-rise Building Construction (초고층 시스템거푸집 공사의 태양광에너지 활용 방안 연구)

  • Kim, Tae-Hoon;Lee, Myung-Do;Lee, Ung-Kyun;Cho, Hun-Hee;Kang, Kyung-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.2
    • /
    • pp.116-126
    • /
    • 2011
  • Recently, eco-friendly energy has been employed in diverse fields of industry in order to reduce environmental pollution and secure a new growth engine. In particular, practical applications of photovoltaic energy, such as building integrated photovoltaic systems, have been implemented to the construction industry based on the extensive interest in photovoltaic power as an unlimited and sustainable energy. While the construction of a high-rise building requires large amounts of energy, methods of reducing energy consumption in the construction phase have rarely been studied. Based on this motivation, the research proposes a photovoltaic based formwork system (PVFS), and then performs a design and feasibility analysis for its application to the construction of a high-rise building. Using a case study, the research implements various analyses, including area, position, and total allowable weight required by PVFS, and evaluates the influences of PVFS on the construction processes, as well as its economic feasibility. The proposed PVFS can be adopted to a real-world project in the near future, depending on the advancement of technology and economic feasibility. The results of this research will contribute to establishing a construction environment that promotes a reduction of energy consumption by using eco-friendly energy in the construction phase.

Application of Some Semiactive Control Algorithms to a Smart Base Isolated Building Employing MR Dampers (MR감쇠기가 설치된 지진격리 건물의 스마트 진동제어)

  • Jung, Hyung-Jo;Choi, Kang-Min;Jang, Ji-Eun;Lee, In-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.544-551
    • /
    • 2005
  • This paper investigates the effectiveness of the MR damper-based control systems for seismic protection of base isolated building sturcutres employing some semiactive control algorithms, such as the modified clipped-optimal control, the maximum energy dissipation, and the modulated homogeneous friction, by examining the Phase I smart base isolated benchmark building problem. The results of the numerical simulations showed that most of the control systems considered herein could be beneficial in reducing seismic responses, especially base displacement or isolator deformation, of base isolated building structures. It is also verified that another version of the modified clipped-optimal control algorithm proposed in this study and the modulated homogeneous friction algorithm are more effective than other semiactive control algorithms.

  • PDF

A Study on the Temperature Controlled Performance of Thermal Reflective Exterior Finishes (열반사성 외장마감재의 온도조절 성능에 관한 연구)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Song, Sung-Yong;Kim, Deuck-Mo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.186-187
    • /
    • 2019
  • In modern times, due to the centralized urban structure, the interval between buildings is narrow and the increase of the heat island phenomenon due to the accumulation of the structure is becoming a social problem. In order to solve these problems, various materials for reducing the surface temperature of buildings are under study. Particularly, in the case of a wall part which is a part directly affected by the outside air of the building, it is a main structural part for determining the room temperature. The purpose of this study was to develop a material that can improve the thermal environment performance of the building by evaluating the temperature control performance of the exterior finishing material using the heat reflecting material as a method for controlling the temperature of the outer wall finishing material.

  • PDF

Feasibility Study on Leveling Method of Electric Power Load by Applying Thermal Storage Air Conditioning System (축열식 열원시스템 적용에 의한 전력부하 평준화의 경제성 검토)

  • Lee, Chulgoo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.1
    • /
    • pp.9-17
    • /
    • 2019
  • Reducing global warming potential has become important, and as one of those methods for reducing it, economic evaluation by applying ice thermal storage air conditioning system was performed. The floor area and height of the subject building was assumed $5,000m^2$ and 20 m. Absorption chillerheater system and air source heat pump system was used for comparing to the subject system, and payback period method was used to perform economic evaluation. Although the running cost of ice thermal storage system is reduced compared to two systems, the ratio is not significant compared to the increase of initial construction expenses, and payback period was calculated to be about 7.7 and 79.3 years. However, the heat storage system should be approached from the viewpoint of long term rather than the economic standard in the present standard.

A Study on the Proposal of Building Technologies for Reducing $CO_2$ Emission of Buildings(Focused on the Multi-Family Residential Buildings) (건물의 $CO_2$ 배출 저감 건축기술요소 제안에 관한 연구(공동주택을 중심으로))

  • Lee, Jong-Sik;Kang, Hae-Jin;Park, Jin-Chul;Rhee, Eon-Ku
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.91-96
    • /
    • 2009
  • First, the base model of multi-family residential buildings are selected, and then the $CO_2$ reduction building technologies that are applicable for multi-family residential buildings are induced by analyzing the examples and then an optimal plan for when the $CO_2$ reduction building technologies can be integrated and applied to the base model was formulated. In the results of converting the energy consumption and reduction amount from the building technologies into $CO_2$ emissions to analyze the distribution ratio compared to the entire $CO_2$ emissions; the heat recovery ventilator is 0.5%, the photovoltaic system is $1.9%{\sim}5.9%$, the solar hot water heating system is $6.3%{\sim}13.1%$ and the ge thermal heat-pump system is 39.0% when both heating and hot water heating are applied. An optimally integrated application method for the building technologies is in charge of heating and hot water heating through the geothermal source heat pump system and in charge of the electricity load through the photovoltaic system(45.2%).

  • PDF