• Title/Summary/Keyword: Reducing $CO_2$

Search Result 1,308, Processing Time 0.022 seconds

Greenhouse Gas Reduction by Air Quality Management Policy in Gyeonggi-do and Its Co-benefit Analysis (경기도 대기질 개선 정책의 온실가스 동시 저감 및 그에 따른 공편익 효과 분석)

  • Kim, Dong Young;Choi, Min-Ae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.6
    • /
    • pp.570-582
    • /
    • 2017
  • In recent years, national and local government's air quality management and climate change adaptation policy has been significantly strengthened. The measures in the two policies may be in a relationship of trade-off or synergy to each other. Greenhouse gases and air pollutants are mostly emitted from the same sources of using considerable amounts of fossil fuels. Co-benefits, in which either measure has a positive effect on the other, may be maximized by reducing the social costs and by consolidating the objectives of the various policies. In this study, the co-benefits were examined by empirically analyzing the effects of air pollutants and greenhouse gas emission reduction, social cost, and cost effectiveness between the two policies. Of the total 80 projects, the next 12 projects generated co-benefits. They are 1) extend restriction area of solid fuel use, 2) expand subsidy of low-$NO_x$ burner, 3) supply hybrid-vehicles, 4) supply electric-vehicles, 5) supply hydrogen fuel cell vehicles, 6) engine retrofit, 7) scrappage of old car, 8) low emission zone, 9) transportation demand management, 10) supply land-based electric of ship, 11) switching anthracite to clean fuel in private sector, 12) expand regional combined-energy supply. The benefits of air pollutants and greenhouse gas-related measures were an annual average of KRW 2,705.4 billion. The social benefits of the transportation demand management were the highest at an annual average of KRW 890.7 billion, and followed by scrappage of old cars and expand regional combined-energy supply. When the social benefits and the annual investment budgets are compared, the cost effectiveness ratio is estimated to be about 3.8. Overall, the reduction of air pollutants caused by the air quality management policy of Gyeonggi-do resulted in an annual average of KRW 4,790.2 billion. In the point sources management sector, the added value of $CO_2$ reduction increased by 4.8% to KRW 1,062.8 billion, while the mobile sources management sector increased by 3.6% to KRW 3,414.1 billion. If social benefits from $CO_2$ reduction are added, the annual average will increase by 7.2% to KRW 5,135.4 billion. The urban and energy management sectors have shown that social benefits increase more than twice as much as the benefits of $CO_2$ reduction. This result implies that more intensive promotion of these measures are needed. This study has significance in that it presents the results of the empirical analysis of the co-benefits generated between the similar policies in the air quality management and the climate change policy which are currently being promoted in Gyeonggi-do. This study suggested that the method of analyzing the policy effect among the main policies in the climate atmospheric policy is established and the effectiveness and priority of the major policies can be evaluated through the policy correlation analysis based on the co-benefits. It is expected that it could be a basis for evaluation the efficiency of the climate change adaptation and air quality management policies implemented by the national and local governments in the future.

Effect of living room air purifier on reducing PM2.5 in living room and bedroom (거실의 공기청정기가 거실과 침실의 초미세먼지 농도 저감에 미치는 영향)

  • Ji, Jun-Ho;Joo, Sang-Woo
    • Particle and aerosol research
    • /
    • v.17 no.4
    • /
    • pp.107-114
    • /
    • 2021
  • In this study, the effect of the air purifier located in the living room on the reduction of PM2.5 concentration in the living room and bedroom was investigated. Measurements were carried out in real-life for about 2 weeks in a Korean apartment building where a 3-person household had lived and the exclusive private area was 84.9 m2. When the air purifier in the living room was operating, the change in PM2.5 concentration was measured when the door to the bedroom connected to the living room was opened and closed. In the case of living with the bedroom door open, the average PM2.5 concentrations in the living room and bedroom were almost the same. When living with the bedroom door closed, the average PM2.5 in the living room was higher than in the bedroom. The ventilation and cooking effects in the living room mainly affected the PM2.5 concentration in the living room. Only one air purifier in the living room was able to keep the PM2.5 concentration in the living room and bedroom low.

The Reactivity for the SO2 Reduction with CO and H2 over Sn-Zr Based Catalysts (Sn-Zr계 촉매 상에서 CO와 H2를 이용한 SO2 환원 반응특성)

  • Han, Gi Bo;Park, No-Kuk;Ryu, Si Ok;Lee, Tae Jin
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.356-362
    • /
    • 2006
  • The $SO_2$ reduction using CO and $H_2$ over Sn-Zr based catalysts was performed in this study. Sn-Zr based catalysts with Sn/Zr molar ratio (0/1, 1/4, 1/1, 2/1, 3/1, 1/0) were prepared by the precipitation and co-precipitation method. The effect of the temperature on the reaction characteristics of the $SO_2$ reduction with a reducing agent such as $H_2$ and CO was investigated under the conditions of space velocity of $10,000ml/g_{-cat.}h$, $([CO(or\;H_2)]/[SO_2])$ of 2.0. As a result, the activity of Sn-Zr based catalysts were higher than $SnO_2$ and $ZrO_2$. The reactivity for the $SO_2$ reduction with CO was higher than that with $H_2$, and sulfur yield in the $SO_2$ reduction by $H_2$ was higher than that by CO. The reactivity for the $SO_2$ reduction with $H_2$ was increased with the reaction temperature regardless of Sn-Zr based catalyst with a Sn/Zr molar ratio. $SnO_2-ZrO_2$ (Sn/Zr=1/4) had highest activity at $550^{\circ}C$, in the $SO_2$ reduction with $H_2$ and $SO_2$ conversion of 94.4% and sulfur yield of 66.4% were obtained at $550^{\circ}C$. On the other hand, in the $SO_2$ reduction by CO, the reactivity was decreased with the increase over $325^{\circ}C$. At the optimal temperature of $325^{\circ}C$, $SO_2$ conversion and sulfur yield were about 100% and 99.5%, respectively, in the $SO_2$ reduction over $SnO_2-ZrO_2$ (Sn/Zr=3/1). Also, the $SO_2$ reduction using syngas with $CO/H_2$ ratio over $SnO_2-ZrO_2$ (Sn/Zr=2/1) was performed in order to investigate the application possibility of the simulated coal gas as the reductant in DSRP. As a result, the reactivity of the $SO_2$ reduction using syngas with $CO/H_2$ ratio was increased with increasing the CO content of syngas. Therefore, it could be known that DSRP using the simulated coal gas over Sn-Zr based catalyst is possible to be realized in IGCC system

EFFECT OF CARBONATE ON THE SOLUBILITY OF NEPTUNIUM IN NATURAL GRANITIC GROUNDWATER

  • Kim, B.Y.;Oh, J.Y.;Baik, M.H.;Yun, J.I.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.552-561
    • /
    • 2010
  • This study investigates the solubility of neptunium (Np) in the deep natural groundwater of the Korea Atomic Energy Research Institute Underground Research Tunnel (KURT). According to a Pourbaix diagram (pH-$E_h$ diagram) that was calculated using the geochemical modeling program PHREEQC 2.0, the redox potential and the carbonate ion concentration both control the solubility of neptunium. The carbonate effect becomes pronounced when the total carbonate concentration is higher than $1.5\;{\times}\;10^{-2}$ M at $E_h$ = -200 mV and the pH value is 10. Given the assumption that the solubility-limiting stable solid phase is $Np(OH)_4(am)$ under the reducing condition relevant to KURT, the soluble neptunium concentrations were in the range of $1\;{\times}\;10^{-9}$ M to $3\;{\times}\;10^{-9}$ M under natural groundwater conditions. However, the solubility of neptunium, which was calculated with the formation constants of neptunium complexes selected in an OECD-NEA TDB review, strongly deviates from the value measured in natural groundwater. Thus, it is highly recommended that a prediction of neptunium solubility is based on the formation constants of ternary Np(IV) hydroxo-carbonato complexes, even though the presence of those complexes is deficient in terms of the characterization of neptunium species. Based on a comparison of the measurements and calculations of geochemical modeling, the formation constants for the "upper limit" of the Np(IV) hydroxo-carbonato complexes, namely $Np(OH)_y(CO_3)_z^{4-y-2z}$, were appraised as follows: log $K^{\circ}_{122}\;=\;-3.0{\pm}0.5$ for $Np(OH)_2(CO_3)_2^{2-}$, log $K^{\circ}_{131}\;=\;-5.0{\pm}0.5$ for $Np(OH)_3(CO_3)^-$, and log $K^{\circ}_{141}\;=\;-6.0{\pm}0.5$ for $Np(OH)_4(CO_3)^{2-}$.

Comparative study of greenhouse gas emission from coastal and offshore gillnet and trap fisheries by field research (연근해 자망과 통발 어업의 온실가스 배출량 현장실측 연구)

  • LEE, Seok-Hyung;KIM, Hyunyoung;YANG, Yongsu;KANG, Da-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.4
    • /
    • pp.315-323
    • /
    • 2018
  • Fossil fuel combustion during fishing activities is a major contributor to climate changes in the fishing industry. The Tier1 methodology calculation and on-site continuous measurements of the greenhouse gas were carried out through the use of fuel by the coastal and offshore gillnet (blue crabs and yellow croaker) and trap (small octopus and red snow crab) fishing boats in Korea. The emission comparison results showed that the field measurements are similar to or slightly higher than the Tier1 estimates for coastal gillnet and trap. In offshore gillnet and trap fisheries, Tier1 estimate of greenhouse gases was about $1,644-13,875kg\;CO_2/L$, which was more than the field measurement value. The $CO_2$ emissions factor based on the fuel usage was $2.49-3.2kg\;CO_2/L$ for coastal fisheries and $1.46-2.24kg\;CO_2/L$ for offshore fisheries. Furthermore, GHG emissions per unit catch and the ratio of field measurement and Tier1 emission estimate were investigated. Since the total catch of coastal fish was relatively small, the emission per unit catch in coastal fisheries was four to eight times larger. The results of this study could be used to determine the baseline data for responding to changes in fisheries environment and reducing greenhouse gas emission.

Cooling and Antisolvent Crystallization of Potassium Bicarbonate in the Presence of Sterically Hindered Alkanolamines (입체 장애 알카놀아민 혼합 수용액에서 중탄산칼륨 결정의 냉각 반용매 결정화)

  • Jo, Chang Sin;Jung, Taesung;Yoon, Hyoung Chul;Kim, Jong-Nam;Rhee, Young Woo
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.383-389
    • /
    • 2014
  • $CO_2$ absorption processes have a good potential for large scale capture of $CO_2$ but a large amount of absorbing solution has to be regenerated, undesirably increasing the consumption of energy such as sensible heat and latent heat of vaporization. In this study, a cooling crystallization process which would separate the $CO_2$-rich potassium bicarbonate crystals from $CO_2$-lean water was developed to reduce the energy penalty. Sterically hindered alkanolamine additives were used to enhance the $CO_2$ removal efficiency and their antisolvent effect on the crystallization was found in a continuous cooling crystallizer. The production yields of crystals were increased in the sequence of 2-amino-2-methyl-1-propanol (AMP) < 2-amino-2-methyl-1,3-propanediol (AMPD) < 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD), which are related to the number of hydroxyl groups in the additive molecules. Using $^{13}carbon$ nuclear magnetic resonance, the additives favored the formation of bicarbonate ions by steric hindrance effect and increased the supersaturation of $KHCO_3$. It is shown that the additives increase the mean size of crystals and crystal growth rate by increasing supersaturation. The additives are promising for enhancing the $CO_2$ removal efficiency and reducing the regeneration energy cost of $CO_2$ absorbing solution by promoting $KHCO_3$ crystallization.

Development of design chart for estimating penetration depth of dynamically installed Hall anchors in soft clays

  • Haijun Zhao;Zhaohan Zhu;Jiawei Che;Wanchun Chen;Qian Yin;Dongli Guo;Haiyang Hu;Shuang Dong
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.209-220
    • /
    • 2023
  • In this study, a series of three-dimensional numerical analyses were carried out to investigate the penetration performance of a dynamically installed Hall anchor. The advanced coupled Eulerian-Lagrangian (CEL) technique was adopted to accurately simulate the large soil deformation during the vertical penetration of a Hall anchor. In total, 52 numerical analyses were conducted to investigate the relationship between anchor penetration depth and the initial kinematic energy. Moreover, a sensitivity analysis was performed to investigate the effects of soil shear strength and soil type on the penetration mechanism of a drop anchor under self-weight. There is a monotonic increase in the penetration depth with an increasing anchor weight when the topsoil of the riverbed is not subjected to erosion. On the other hand, all the computed depths significantly increase when soil erosion is taken into consideration. This is mainly due to an enhanced initial kinematic energy from an increased dropping depth. Both depths increase exponentially with the initial kinematic energy. An enhanced shear strength can potentially increase the side resistance and end-bearing pressure around a drop anchor, thus significantly reducing the downward penetration of a hall anchor. Design charts are developed to directly estimate penetration depth and associated plastic zone due to dynamically installed anchor at arbitrary soil shear strength and anchor kinematic energy.

Effect of different days of postharvest treatment and CO2 concentrations on the quality of 'Seolhyang' strawberry during storage (수확 후 CO2 처리 시기 및 농도에 따른 '설향' 딸기 저장 중 품질변화)

  • Kim, Ji-Gang;Choi, Ji-Woen;Park, Me-Hea
    • Food Science and Preservation
    • /
    • v.23 no.1
    • /
    • pp.12-19
    • /
    • 2016
  • This study was conducted to determine $CO_2$ treatment condition to extend the shelf-life of 'Seolhyang' strawberry. Fresh strawberries with red color on 80% of the fruit surface were harvested. The samples at two different stages (on the $1^{st}$ and $3^{rd}$ day after harvest) were placed in a gas-tight chamber with 0, 5, 15, or 30% $CO_2$ concentration for 3 hours at $4^{\circ}C$. Then, the strawberry samples were immediately packaged in a PET tray and stored at $4^{\circ}C$. The carbon dioxide treatment was effective in maintaining the quality of 'Seolhyang' strawberries treated on the $1^{st}$ day after harvest. These samples had higher firmness, lower redness, softening index, and decay rate compared to samples treated on the $3^{rd}$ day after harvest. Treatment with both 15 and 30% of $CO_2$ concentration on the $1^{st}$ day after harvest induced an increase of firmness of 'Seolhyang' strawberry after the treatment. Samples treated with 15 and 30% $CO_2$ the $1^{st}$ day after harvest maintained quality for 10 days. However, samples treated with $CO_2$ on the $3^{rd}$ day after harvest lost marketability at 10 days of storage. At the atmosphere containing 30% $CO_2$ on the $1^{st}$ day after harvest was most effective in reducing decay rate and fruit softening, and maintaining bright red color of strawberries among different $CO_2$ concentrations. Therefore, a 30% $CO_2$ treatment within one day after harvest can be a practical postharvest technology to extend shelf-life of 'Seolhyang' strawberry.

An Experimental Study on the Clutch Type Water Pump of Diesel Passenger Vehicle for Reducing Fuel Consumption and CO2 Emission (연비 개선 및 CO2 저감을 위한 승용디젤 차량의 클러치타입 워터펌프 적용에 따른 실험적 연구)

  • Jeong, Soo-Jin;Park, Jung-Kwon;Oh, Chang-Boke;Cho, Yong-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.123-134
    • /
    • 2012
  • A typical cooling system of an engine relies on a water pump that circulates the coolant through the system. The pump is typically driven by the crankshaft through a mechanical link with engine starting. In order to reduce the friction and warm-up time of an engine, the clutch-type water pump (CWP) was applied in 2.0 liter diesel vehicle. The clutch-type water pump can force cooling water to supply into an engine by the operation of an electromagnetic clutch equipped as the inner part of pump system. The onset of CWP is decided by temperature of cooling water and engine oil. And, the control logic for an optimal operation of the clutch-type water pump was developed and applied in engine and vehicle tests. In this study, the warm-up time was measured with the conventional water pump and clutch-type water pump in engine tests. And the emission and the fuel consumption were evaluated under NEDC mode in vehicle tests. Also, tests were carried out for the various temperature conditions starting the operation of CWP. From the results of the study, the application of CWP can improve the fuel consumption and $CO_2$ reduction by about 3%.

Gas Composition and Fluid Inclusion Studies of the Mesozoic Granitic Rocks in South Korea (남한의 중생대 화강암중의 가스성분과 유체포유물 연구)

  • Kim, Kyu Han;Park, Seong Sook;Ryuichi, Sugisaki
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.455-470
    • /
    • 1996
  • Mesozoic granitic rocks in the Korean peninsula contain $H_2$, $CH_4$, CO and rare $C_2H_6$. The Jurassic Daebo granites mostly belonging to the ilmenite series are predominated in $CH_4$. Meanwhile, the magnetite series Bulguksa granites of Cretaceous age in the Kyongsang basin and Okchon zone are relatively enriched in $CO_2$. The older granites have a wide variation of $CH_4/CO_2$ ratios (0.1~1.0) compared to those of the younger ones (0.1~0.5). This characteristics of gas compositions suggest that the Jurassic granites are principally derived from the partial melting of metasedimentary rocks with much reducing materials in the lower continental crust. On the other hand, the mantle source granitic magmas might be responsible for the Cretaceous granites characterized by dominant and homogeneous $CO_2$ gas compositions. Liquid-vapor homogenization temperatures of quartz in the Jurassic and Cretaceous granites range from 108 to $539^{\circ}C$ (av. $324^{\circ}C$) and 160 to $556^{\circ}C$ (av. $358^{\circ}C$), respectively. Their salinities are between 0.2 and 16.3 wt.% NaCl for the Jurassic granites and 0.4, and 15.6 wt.% NaCl for the Cretaceous ones. Fluid inclusions with solid daughter minerals lying on or near the halite equilibrium curve represent inclusion fluids from the magmatic stage. The type I and II fluid inclusions which are plotted apart from the equilibrium curve are considered to trap in late hydrothermal alteration stage with a increasing influx of metedric water.

  • PDF