• Title/Summary/Keyword: Reducing $CO_2$

Search Result 1,308, Processing Time 0.03 seconds

Effect of Plating Condition and Plating Rate on the Magnetic Properties of Electroless Co-Cu-P Deposits (무전해 Co-Cu-P 도금층의 자성에 미치는 도금조건과 도금속도의 영향)

  • Oh, I.S.;Park, S.D.
    • Journal of Power System Engineering
    • /
    • v.8 no.3
    • /
    • pp.36-43
    • /
    • 2004
  • The effect of bath composition, plating condition and plating rate on the magnetic property of electroless Co-Cu-P deposits were investigated. With increasing $CuCl_2$ concentration in the bath, plating rate increased, while the Br value of deposit decreased sharply. Deposited surface were inferiority by the increase pH above 10.5, bath temperature higher than $80^{\circ}C$. Plating reaction had been ceased by the increase of pH above 11, bath temperature higher than $90^{\circ}C$ and under $40^{\circ}C$. The Br value of deposit was uniform with various concentration of complexing agent(sodium citrate) in the bath. The Br value of deposit was almost equal to that found by the addition of stabilizer (thiourea) and accelerator(NaF). The Br value of deposit was uniform in plating time(20min) and heat treatment temperature(below $200^{\circ}C$), and were confirmed to have adequate bath stability for practical use.

  • PDF

Emission Evaluation of Emulsion Fuel Prepared from Bunker C Oil (벙커 C유를 사용한 에멀젼 연료유의 배기가스 특성)

  • Lim, HeungKyoon;Lee, MyungJin;Chi, Gyeong-Yup;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.186-192
    • /
    • 2017
  • In this study, water in oil (W/O) emulsion fuel was prepared with surfactant mixture of OIMS90 and NP12 by varying ratio of water to bunker-C oil, surfactant concentration and composition, emulsification time, stirring intensity, temperature and mixing time. Diesel engine performance and exhaust emissions were measured and analyzed with prepared emulsified fuel and compared with those measured using bunker Coil. The results indicated that bunker C emulsion fuel stabilized by surfactant mixture of OIMS90 and NP12 is efficient in reducing emissions of particulate matter, $NO_2$, CO, $CO_2$ and $SO_2$. The biggest reduction in exhaust emission was achieved by using emulsion fuel prepared by OIMS90/NP12 = 4 : 6, 500 ppm of total surfactant concentration and 10% water content at $80^{\circ}C$. Boiler efficiency test measured with emulsion fuel showed excellent energy efficiency compared with bunker C oil.

Effects of Dysprosium and Thulium addition on microstructure and electric properties of co-doped $BaTiO_3$ for MLCCs

  • Kim, Do-Wan;Kim, Jin-Seong;Noh, Tai-Min;Kang, Do-Won;Kim, Jeong-Wook;Lee, Hee-Soo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.48.2-48.2
    • /
    • 2010
  • The effect of additives as rare-earth in dielectric materials has been studied to meet the development trend in electronics on the miniaturization with increasing the capacitance of MLCCs (multi-layered ceramic capacitors). It was reported that the addition of rare-earth oxides in dielectrics would contribute to enhance dielectric properties and high temperature stability. Especially, dysprosium and thulium are well known to the representative elements functioned as selective substitution in barium titanate with perovskite structure. The effects of these additives on microstructure and electric properties were studied. The 0.8 mol% Dy doped $BaTiO_3$ and the 1.0 mol% Tm doped $BaTiO_3$ had the highest electric properties as optimized composition, respectively. According to the increase of rare-earth contents, the growth of abnormal grains was suppressed and pyrochlore phase was formed in more than solubility limits. Furthermore, the effect of two rare-earth elements co-doped $BaTiO_3$ on the dielectric properties and insulation resistance was investigated with different concentration. The dielectric specimens with $BaTiO_3-Dy_2O_3-Tm2O_3$ system were prepared by design of experiment for improving the electric properties and sintered at $1320^{\circ}C$ for 2h in a reducing atmosphere. The dielectric properties were evaluated from -55 to $125^{\circ}C$ (at $1KHz{\pm}10%$ and $1.0{\pm}0.2V$) and the insulation resistance was examined at 16V for 2 min. The morphology and crystallinity of the specimens were determined by microstructural and phase analysis.

  • PDF

Transmission Characteristics of SARS-CoV-2 That Hinder Effective Control

  • Seongman Bae;Joon Seo Lim;Ji Yeun Kim;Jiwon Jung;Sung-Han Kim
    • IMMUNE NETWORK
    • /
    • v.21 no.1
    • /
    • pp.9.1-9.8
    • /
    • 2021
  • The most important characteristics of coronavirus disease 2019 (COVID-19) transmission that makes it difficult to control are 1) asymptomatic and presymptomatic transmission, 2) low incidence or lack of dominant systemic symptoms such as fever, 3) airborne transmission that may need a high infectious dose, and 4) super-spread events (SSEs). Patients with COVID-19 have high viral loads at symptom onset or even a few days prior to symptom onset, and most patients with COVID-19 have only mild respiratory symptoms or merely pauci-/null-symptoms. These characteristics of the virus enable it to easily spread to the community because most patients are unaware of their potential infectivity, and symptom-based control measures cannot prevent this type of transmission. Furthermore, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is also capable of airborne transmission in conditions such as aerosol-generating procedures, under-ventilated indoor spaces, and over-crowded areas. In this context, universal mask-wearing is important to prevent both outward and inward transmission until an adequate degree of herd immunity is achieved through vaccination. Lastly, the SSEs of SARS-CoV-2 transmission emphasize the importance of reducing contacts by limiting social gatherings. The above-mentioned transmission characteristics of SARS-CoV-2 have culminated in the failure of long-lasting quarantine measures, and indicate that only highly effective vaccines can keep the communities safe from this deadly, multifaceted virus.

The Latest Progress on the Development of Technologies for $CO_2$ Storage in Marine Geological Structure and its Application in Republic of Korea (해저 지질구조내 $CO_2$ 저장기술의 연구개발 동향 및 향후 국내 실용화 방안)

  • Kang, Seong-Gil;Huh, Cheol
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.1
    • /
    • pp.24-34
    • /
    • 2008
  • To mitigate the climate change and global warming, various technologies have been internationally proposed for reducing greenhouse gas emissions. Especially, in recent, carbon dioxide capture and storage (CCS) technology is regarded as one of the most promising emission reduction options that $CO_2$ be captured from major point sources (eg., power plant) and transported for storage into the marine geological structure such as deep sea saline aquifer. The purpose of this paper is to review the latest progress on the development of technologies for $CO_2$ storage in marine geological structure and its perspective in republic of Korea. To develop the technologies for $CO_2$ storage in marine geological structure, we carried out relevant R&D project, which cover the initial survey of potentially suitable marine geological structure fur $CO_2$ storage site and monitoring of the stored $CO_2$ behavior, basic design for $CO_2$ transport and storage process including onshore/offshore plant and assessment of potential environmental risk related to $CO_2$ storage in geological structure in republic of Korea. By using the results of the present researches, we can contribute to understanding not only how commercial scale (about 1 $MtCO_2$) deployment of $CO_2$ storage in the marine geological structure of East Sea, Korea, is realized but also how more reliable and safe CCS is achieved. The present study also suggests that it is possible to reduce environmental cost (about 2 trillion Won per year) with developed technology for $CO_2$ storage in marine geological structure until 2050.

  • PDF

Current and Future Trends of District Heating System for a Sustainable Future and Greenhouse Gas Reduction (온실가스 감축 및 지속가능 미래를 위한 집단에너지사업 방향)

  • Jung, Min-Jung;Park, Jin-Kyu;Ahn, Deog-Yong;Lee, Nam-Hoon
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.377-384
    • /
    • 2017
  • Amid growing concerns about energy security, energy prices, economic competitiveness, and climate change, district heating (DH) system has been recognized for its significant benefits and the part it can play in efficiently meeting society's growing energy demands while reducing environmental impacts. Policy makers often need to quantify the fuel and carbon dioxide ($CO_2$) emissions savings of DH system compared to conventional individual heating (IH) system in order to estimate its actual emissions reductions. The objective of this paper is to calculate energy efficiency and $CO_2$ emissions saving, and to propose the future direction for DH system in Korea. DH system achieved total system efficiencies of 67.9% compared to 54.1% for IH system in 2015. DH system reduced $CO_2$ emissions by $381,311ton-CO_2$ (4.1%) compared to IH system. The results suggest that DH system is more preferred than IH system using natural gas. In Korea, the aim is to reduce dependence on fossil fuels and to use energy more efficiently. DH system have significant potential with regard to achieving this aim, because DH system are already integrated with power generation in the electricity since combined heating and power (CHP) are used for heat supply. Although the future conditions for DH may look promising, the current DH system in Korea must be enhanced in order to handle future competition. Thus, the next DH system must be integrated with multiple renewable energy and waste heat energy sources.

Simulation on the Alternation of Limestone for Portland Cement Raw Material by Steel By-products Containing CaO (CaO 함유 철강 부산물을 활용한 시멘트 원료 석회석 대체 시뮬레이션)

  • Jae-Won Choi;Byoung-Know You;Min-Cheol Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • In this study, to reduce CO2 emission in the cement manufacturing process, we evaluated the limestone that is used as a raw material for cement, substituted with steel slag by the various substituted levels. Based on the chemical composition of each raw materials including limestone, and blast furnace slow cooling slag, converter slag, and KR slag as an alternative raw material, we simulated the optimal cement raw mixture by the substitution levels of limestone. Test results indicated that the steel slags contain a certain level of CaO that can be used as alternative decarbonated raw materials, and it has enough to partially reduce the amount of limestonem. And we estimated the maximum usable levels of each raw material. In particular, it was confirmed that by using a mixture of these raw materials rather than using them one by one, the effect of reducing limestone was increased and CO2 emission from the cement manufacturing process could be reduced.

Gross Chemical Analysis for Honey and Pollen Load (봉밀(蜂蜜) 및 화분하(花粉荷)의 순도시험(純度試驗)과 성분조사(成分調査))

  • Suk, Kuy-Duk;Kim, Mi-Kyung
    • Korean Journal of Pharmacognosy
    • /
    • v.14 no.4
    • /
    • pp.197-200
    • /
    • 1983
  • This study is concerned with quality and analysis of nutritive value of commercially available honey and pollen load. Of thirteen kind of commercially available honeys, acid levels were less than KP IV standard. Color reaction for ammonia, resorcine and varium chloride was negative and trace of starch and dextrine was not detected. There were no extraneous materials in honey samples. Specific gravity of sample was slightly higher than KP IV standard. Total ash lied between 0.01 and 0.15% of honey weight which was less than KP IV standard, except 0.56% of Castanea Honey. Studies on mineral compositions (AAS) for honeys and pollen loads showed that $Na^+,\;K^+,\;Ca^{2+},\;Fe^{2+}\;Cu^{2+}\;and\;CO^{2+}$ were the most commonly occuring minerals. Pollen loads showed higher levels of mineral contents than honeys. Castanea Honey revealed rich in minerals. $Cd^{2+}\;and\;Pb^{2+}$ were found relatively higher level in Robinia Honey. Reducing sugar level showed $60{\sim}70$ in honeys and $25{\sim}30$ in pollen loads. Non reducing sugar varied between 2 to 7% in pollen loads.

  • PDF

Basic Study of Degradation Test for Magnetic Contactors and Reliability Centered Maintenance

  • Ryu, Haeng-Soo;Han, Gyu-Hwan;Yoon, Nam-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.441-444
    • /
    • 2007
  • The mechanical endurance is the critical characteristic of Magnetic contactors (MCs), which are widely used in such industrial equipments as elevators, cranes, and factory control rooms in order to close and open the control circuit. Testing time, however, is so long in most cases that some method of reducing the testing period is required. Therefore, the degradation test by the detected vibration of MCs is developed to reduce the testing time in this work. The degradation test data are analyzed and the prediction model is provided. Also, the possibility of this technology for Reliability Centered Maintenance (RCM) will be shown. This will reduce the period of the product development and raise the reliability of the equipment in power distribution.

Scale Economies and The Effects of A Carbon Tax on Korean Economy : A Cournot-Walrasian CGE Simulation (규모의 경제와 탄소세의 경제적 효과: CGE모형을 이용한 분석)

  • Shin, Dong-Cheon
    • Environmental and Resource Economics Review
    • /
    • v.9 no.5
    • /
    • pp.973-997
    • /
    • 2000
  • The carbon tax is one of several measures to reduce the green-house gases emitted from burning the fossil fuels, which has been much discussed internationally. The analyses of the effects of a carbon tax on individual countries have been carried out by applying the computable general equilibrium(CGE) models, especially models with the assumption of non-existence of scale economies. However, the introduction of scale economies to CGE models changes the simulation results drastically. In this paper, two CGE models are used to compute and compare the economic and $CO_2$ reduction effects of a carbon tax, one of with is the model with scale economies and the other is without scale economies. One of main results is that the analysis using the CGE model without scale economies may underestimate the effects of a carbon tax on GDP and reducing the emission of $CO_2$.

  • PDF