• Title/Summary/Keyword: Reducing $CO_2$

Search Result 1,308, Processing Time 0.024 seconds

Antioxidant Activity of Stevia Leaf Extracts Prepared by Various Extraction Methods (다양한 추출방법으로 조제된 스테비아 잎 추출물의 항산화 활성)

  • Kim, Jae-Hun;Sung, Nak-Yun;Kwon, Sun-Kyu;Jung, Pil-Moon;Choi, Jong-Il;Yoon, Yo-Han;Song, Beom-Seok;Yoon, Tai-Young;Kee, Hee-Jin;Lee, Ju-Woon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.2
    • /
    • pp.313-318
    • /
    • 2010
  • This study was carried out to evaluate the antioxidant activity of stevia extracts from Stevia rebaudiana Bertoni leaves. Stevia extracts were prepared by three different methods including hot water extraction (HWE) at $120^{\circ}C$ for 4 hr, vacuum extraction (VE) at $65^{\circ}C$ for 4 hr under 0.08 MPa, and fermentation of hot water extract (FHWE) using Lactobacillus buchneri. The antioxidant activities measured by radical scavenging activity, ferric-reducing antioxidant potential ability, and thiobarbituric acid reactive substance showed the highest values in vacuum extract. Also, the antioxidant activities of all extracts were higher than those of stevioside and rebaudioside at the same concentrations, known as the major active components in stevia. To define the antioxidative compound in stevia extracts, the total phenol content was measured, and it was shown that the highest contents of total phenolic compounds were in vacuum extract. These results suggest that the antioxidant activity of stevia extract was due to the phenolic compound components. In addition, vacuum extraction was the proper method to prepare stevia extract with higher antioxidant activity.

Improvement of DeNOx efficiency of SNCR Process with Chemical Additives in Urea Soution (환원제로 우레아를 사용하는 SNCR 공정에서 첨가제 적용에 따른 탈질효율 향상 연구)

  • Yoo, Kyung Seun;Park, Sung Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.663-668
    • /
    • 2017
  • Dye waste water generated in the dye industry is categorized as hazardous waste water that requires appropriate treatment. The pilot scale experimental trials were carried out using dye waste water as an effective additive for the selective non-catalytic reduction (SNCR) of NOx in combustion flue gases. The additives were waste liquor obtained from the dye industry and several purification steps were taken to make a standardized reagents. The dye waste water was shown to possess valuable SNCR qualities (at least 87% NOx reduction efficiency) considering its availability as a waste product, which has to be strictly treated, and have little effects on CO removal. The results indicated that the NO removal efficiency increased first and then decreased with increasing temperature within $750-1150^{\circ}C$. The maximum NO reduction efficiency was approximately 87% at the optimal reaction temperature. A more than 10% increase in NO reduction was achieved in the presence of 1000 ppm Na-additives (dye waste water) compared to that without additives. The Na-based additives have also a significant promoting effect on $N_2O$ reduction and within the SNCR temperature window.

Evaluation Method of Green Construction Technologies Using Integrated LCC and LCA Analysis (LCC-LCA 통합 분석에 의한 친환경 건설기술 평가방법)

  • Kim, Yoon-Duk;Cha, Hee-Sung;Kim, Kyung-Ra;Shin, Dong-Woo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.3
    • /
    • pp.91-100
    • /
    • 2011
  • Green technologies of buildings are spreading for saving resource and energy consumption during life cycle of buildings. However, selection of optimized the technologies for applying projects is needed a lot of time and costs. Therefore prioritization is necessary to apply the technologies for buildings. An evaluation of economic value for the technologies is significant for prioritization of the technologies, however, the current evaluation system of economic value for technologies is not reflected the accurate features of the technologies. Green technologies have the objectives for reducing the emission of CO2 and saving the cost during the whole lifecycle of buildings. Thus the evaluation of economic feasibility for green technologies is needed to include the economic value from improving the environment. This paper developed the economic evaluation method integrated with LCC and LCA to accurately analyze the economic value for green technologies. Moreover, this paper drew the priority of the technologies by conducting case studies with the integrated method and analyzing the results with AHP. The conclusion of case studies, Green technologies is worth more if to include the economic value from improving the environment. Then in analysis of priority, Green intelligent component technologies were rated the highest. The conclusion of the study is able to utilize the supporting tool for making decision to select the optimized technologies for the projects and precedence study for developing future research of prioritization for green technologies. The future study for improving the developed method will supplement the various evaluation factors and apply the detailed weight to analyze the priority of green technologies.

The Effect of NaCI on the Growth and Ginsenoside Production from Ginseng Hairy Root (인삼모상근의 생장과 Ginsenoside 생산에 미치는 NaCl의 영향)

  • Kim, Yu-Jin;Sim, Ju-Sun;;Lee, Chung-Hyae;In, Jun-Gyo;Lee, Bum-Soo;Yang, Deok-Chun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.2
    • /
    • pp.94-99
    • /
    • 2008
  • Korean ginseng (Panax ginseng C.A. Meyer) is very difficult to obtain stable production of qualified ginseng roots because of variable stresses in soil environments. High salt concentrations in the ginseng nursery soil environment of Korea is one of important reducing factors for the stable production of quality ginseng. These studies were accomplished to identify the growth rate and production of ginsenoside from ginseng hairy root against NaCI. In the MS liquid culture, the highest contents and productivity of ginsenosides were appeared at 4 week after onset of the treatment of 0.1 M NaCI. And 0.24 M NaCI was more effective on the growth of ginseng hairy root under light condition than dark condition. Plants generally produce secondary metabolites in nature as a defense mechanism against pathogenic and insect attack. In this study, NaCI acts as a kind of stress as well as elicitor for production of ginsenosides.

Fermentation Characteristics of Whole Soybean Meju Model System Inoculated with 4 Bacillus Strains (Baciilus속 세균 4종을 이용한 콩알메주 Model System의 발효특성)

  • Kim, Dong-Ho;Lim, Dae-Won;Bai, Suk;Chun, Soon-Bai
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.1006-1015
    • /
    • 1997
  • Whole soybean meju was fermented with four Bacillus strains for 45 hr in its model system. The pH range of the product was $7.98{\sim}8.68$, the contents of amino nitrogen and ammoniacal nitrogen were $286{\sim}439\;mg%,\;0.11{\sim}0.23%$, respectively and that of reducing sugar ranged $0.65{\sim}2.24%$. During fermentation, the enzyme activities increased up to $30{\sim}40\;hr$ of fermentation and slightly decreased after 45 hr. Stachyose was special sugar components for B. licheniformis and raffinose was for B. natto. The components of the organic acid showed distinctive patterns among four products and the patterns of amino acids and fatty acids were almost similar to those of other reports. The main and common odor concentrates of meju were pyrazine components, 3-methyl-1-butanol, acetic acid and ethanol. Chunggukjang, mixed with B. natto and B. licheniformis showed more acceptabilities than other combinations. Soybean paste, mixed with B. megaterium and B. subtilis, soysauce, mixed with B. megaterium and A. oryzae showed excellent acceptability, respectively.

  • PDF

Properties of Engineering and Durability Concrete with Fly-ash and Blast Furnace Slag in Normal Strength Level (플라이애시 및 고로슬래그 첨가율에 따른 일반강도영역 콘크리트의 공학적 특성 및 내구성)

  • Kim, Gyu-Yong;Shin, Kyoung-Su;Lim, Chang-Hyuk;Nam, Jeong-Soo;Kim, Moo-Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.103-110
    • /
    • 2010
  • Recently, reducing usage of cement and using by-product of industry such as blast furnace slag and fly-ash have been increased to reduce $CO_2$ gas emission. That apply to construction. As a result, reduction of environmental stress and recycling of resources are expected. In this study, as basic study to the reuse of resources and reduce Environmental Load, comparing and analyzing hardening characteristics and durability as using the blast furnace slag and fly-ash, examining concrete characteristics substituted the three elements for the blast furnace slag and fly-ash and evaluating the relationship as binder. Through this, it want to provide the basic data for mass utilization. Blast furnace slag powder and replaced at fly-ash compressive strength of concrete in the strength of the initial seven days material age lower level of expression significantly compared to the concrete, but, 28 days after the similar or higher compressive strength than the concrete expression of the was. In addition, the reserves replacement of blast furnace slag powder salt injury increasing resistance are seen improvements, according to the conventional blast furnace slag powder study by the chloride ions on the surface of the concrete are improved being fixation salt injury resistance is considered.

  • PDF

A Study on Capacity of Electric Propulsion System by Load Analysis of 6,800TEU Container Ship (6,800TEU 컨테이너선의 부하분석을 통한 전기추진시스템 용량 연구)

  • Jang, Jae-Hee;Son, Na-Young;Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.437-445
    • /
    • 2018
  • IMO (International Maritime Organization) has been strengthening the regulations of ship emission gas such as sulfur oxides (SOX), nitrogen oxides (NOX) and carbon dioxides (CO2) to protect the marine environment. Especially, ECA (Emission Control Area) has been set and operated in the USA and US. As a countermeasure against these environmental regulations, the demand for environmentally, friendly and highly efficient vessels has led to a growing interest in technology related research with respect to electric propulsion systems capable of reducing exhaust gas. Container ships were excluded from the application coverage of the electric propulsion systems for reasons of operation at economical speed. However, in the future, the need for electric propulsion system is expected to rise, because it is easy to monitor and control so that it can be an applicate to smart ship which are represented by fourth industrial revolution technology. In this study, research was carried out to design a generator and battery capacity through the load analysis of the 6,800TEU container ship to apply the electric propulsion system of the container ship. A capacity design based on the load analysis has an advantage that the generator can be operated in a high efficiency section through the load distribution control using the battery.

Smoke Generation by Burning Test of Cypress Plates Treated with Boron Compounds (붕소 화합물로 처리된 편백목재의 연소시험에 의한 연기발생)

  • Chung, Yeong-Jin;Jin, Eui
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.670-676
    • /
    • 2018
  • Experiments on combustion gases generation of untreated cypress specimens or treated with boric acid, ammonium pentaborate, and boric acid/ammonium pentaborate additive were carried out. Test specimens were painted three times with 15 wt% boron compound aqueous solutions. After drying, the generation of combustion gas was analyzed using a cone calorimeter (ISO 5660-1). As a result, comparing to untreated specimen, the smoke performance index (SPI) of the specimens treated with the boron compound increased by 1.37 to 2.68 times and the smoke growth index (SGI) decreased by 29.4 to 52.9%. The smoke intensity (SI) of the specimens treated with boron compounds is expected to be 1.16 to 3.92 times lower than that of untreated specimens, resulting in lower smoke and fire hazards. Also, the maximum carbon monoxide ($CO_{peak}$) concentration of specimens treated with boron compounds was 12.7 to 30.9% lower than that of untreated specimens. However, it was measured to produce fatal toxicities from 1.52 to 1.92 times higher than that of permissible exposure limits (PEL) by Occupational Safety and Health Administration (OSHA). The boron compounds played a role in reducing carbon monoxide, but it did not meet the expectation of reduction effect because of the high concentration of carbon monoxide in cypress itself.

A Study on the Atmospheric Pressure Control of the VARTM Process for Increasing the Fiber Volume Fraction and Reducing Void (섬유부피분율 증가와 공극 감소를 위한 VARTM 공정의 대기압 제어에 관한 연구)

  • Kwak, Seong-Hun;Kim, Tae-Jun;Tak, Yun-Hak;Kwon, Sung-Il;Lee, Jea-Hyun;Kim, Sang-Yong;Lee, Jong-Cheon
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.88-95
    • /
    • 2021
  • VARTM (Vacuum-assisted resin transfer molding) process is a low-cost process technology and affiliated with OoA (Out of Autoclave). Besides, it has been widely used in various fields. However, because of its lower quality than the autoclave process, it isn't easy to apply the VARTM process to the aerospace industry, which requires high reliability. The main problem of the VARTM process is the loss of mechanical properties due to the low fiber volume fraction and high void content in comparison to the autoclave. Therefore, many researchers have studied to reduce void and increase fiber volume fraction. This study examines whether the method of controlling atmospheric pressure could increase the fiber volume fraction and reduce void during the resin impregnation process. Reliability evaluation was confirmed by compressive strength test, fiber volume fraction analysis, and optical microscopy. As a result, it was confirmed that increasing the atmospheric pressure step by step in the VARTM process of impregnating the preform with resin effectively increases the fiber volume fraction and reduces void.

Chemical Durability Test of Thin Membrane in Proton Exchange Membrane Fuel Cells (고분자전해질 연료전지에서 박막의 화학적 내구성 평가)

  • Sohyeong Oh;Donggeun Yoo;Sunggi Jung;Jihong Jeong;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.362-367
    • /
    • 2023
  • Recently, research and development of proton exchange membrane fuel cells (PEMFC) membranes are progressing in the direction of thinning to reduce prices and improve performance. Demand for hydrogen-powered vehicles for commercial vehicles is also increasing, and their durability should be five times greater than those for passenger vehicles. Despite the thinning of the membranes, the durability of the membranes must be increased five times, so the improvement of the durability of the membranes has become more important. Since the acceleration durability evaluation time also needs to be shortened, the protocol using oxygen instead of air in the existing protocol was applied to a 10 ㎛ thin membrane to evaluate durability. The accelerated durability test (Open circuit voltage holding) was terminated at 720 hours. If the air-based department of energy (DOE) protocol was used, a lifespan of 450,000 km of driving hours would be expected, with a durability of about 1,500 hours. During the chemical durability evaluation, the active area of the electrode decreased by 51%, suggesting that catalyst degradation had an effect on membrane durability. Reducing the catalyst degradation rate is expected to increase membrane durability.