• 제목/요약/키워드: Reduced rotational speed

검색결과 71건 처리시간 0.024초

Improvement of the Low-Speed Friction Characteristics of a Hydraulic Piston Pump by PVD-Coating of TiN

  • Hong Yeh-Sun;Lee Sang-Yul;Kim Sung-Hun;Lim Hyun-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.358-365
    • /
    • 2006
  • The hydraulic pump of an Electro-hydrostatic Actuator should be able to quickly feed large volume of oil into hydraulic cylinder in order to reduce the response time. On the other hand, it should be also able to precisely dispense small amount of oil through low-speed operation so that the steady state position control error of the actuator can be accurately compensated. Within the scope of axial piston type hydraulic pumps, this paper is focused on the investigation how the surface treatment of their cylinder barrel with TiN plasma coating can contribute to the reduction of the friction and wear rate of valve plate in the low-speed range with mixed lubrication. The results showed that the friction torque of the valve plate mated with a TiN coated cylinder barrel could be reduced to 22% of that with an uncoated original one when load pressure was 300 bar and rotational speed 100 rpm. It means that the torque efficiency of the test pump was expected to increase more than 1.3% under the same working condition. At the same time, the wear rate of the valve plate could be reduced to $40\sim50%$.

Low energy and area efficient quaternary multiplier with carbon nanotube field effect transistors

  • Rahmati, Saeed;Farshidi, Ebrahim;Ganji, Jabbar
    • ETRI Journal
    • /
    • 제43권4호
    • /
    • pp.717-727
    • /
    • 2021
  • In this study, new multiplier and adder method designs with multiplexers are proposed. The designs are based on quaternary logic and a carbon nanotube field-effect transistor (CNTFET). The design utilizes 4 × 4 multiplier blocks. Applying specific rotational functions and unary operators to the quaternary logic reduced the power delay produced (PDP) circuit by 54% and 17.5% in the CNTFETs used in the adder block and by 98.4% and 43.62% in the transistors in the multiplier block, respectively. The proposed 4 × 4 multiplier also reduced the occupied area by 66.05% and increased the speed circuit by 55.59%. The proposed designs are simulated using HSPICE software and 32 nm technology in the Stanford Compact SPICE model for CNTFETs. The simulated results display a significant improvement in the fabrication, average power consumption, speed, and PDP compared to the current bestperforming techniques in the literature. The proposed operators and circuits are evaluated under various operating conditions, and the results demonstrate the stability of the proposed circuits.

점성토 함량 특성에 따른 shield TBM cutterhead 개구부의 폐색현상에 관한 연구 (A study on the clogging of shield TBM cutterhead opening area according to the characteristics of cohesive soil content)

  • 방규민;김연덕;황병현;조성우;김상환
    • 한국터널지하공간학회 논문집
    • /
    • 제23권4호
    • /
    • pp.265-280
    • /
    • 2021
  • 도시화로 인한 인구의 집중은 도심지 지하공간 개발을 촉발시켰으며, 그로인해 진동과 소음으로 인한 환경문제 및 민원이 많은 발파공법보다 진동과 소음에 대한 영향이 없는 TBM공법에 많은 관심을 가지게 되었다. 이런 이유로 TBM에 대한 많은 연구가 진행되었으나 TBM 장비의 커터헤드 개구부가 굴착되는 지반조건에 따라 폐색되는 특성에 대한 연구는 미비한 실정이다. 그렇기 때문에 쉴드 TBM 굴진 시 커터헤드 개구부의 폐색현상을 연구하기 위해 축소모형시험을 진행하였다. 쉴드 TBM 장비의 커터헤드 개구부 폐색현상을 규명하기 위해 점토비(10%, 30%, 50%), 커터헤드 개구율(30%, 50%, 60%), 커터헤드 회전방향(일방향, 양방향) 및 회전속도(3 RPM, 6 RPM)을 변수로 실험조건을 달리하여 36가지의 Case에 대해 축소모형실험을 진행하였다. 쉴드 TBM 폐색현상에 대한 축소모형실험 결과, 점토가 함유된 지반 조건은 양방향 회전이 일방향 회전보다 폐색영향이 증가하고 커터헤드의 회전속도가 낮을수록 폐색영향이 적은 것으로 나타났다. 그에 따라 지반 굴착 시 지반조건을 고려하여 커터헤드 회전 방향, 회전 속도 및 개구율을 산정한다면 폐색 영향을 저감할 수 있을 것이다. 폐색영향이 저감됨에 따라 공사기간의 단축에 효과적일 것으로 사료된다. 따라서 본 연구는 해당연구가 전무한 국내 쉴드 TBM 시공 시 그 활용에 있어 중요한 자료가 될 것으로 판단된다.

자기베어링지지 연삭기 추축계의 고속 회전시 런아웃 적응제어 (Adaptive Runout Control of Magnetically Suspended High Speed Grinder Spindle)

  • 노승국;경진호;박종권;최언돈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.52-55
    • /
    • 1997
  • In this paper, the case study of reducing rotational errors is done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. For the most case, the electrical runout of sensor target is big even in well-finished surface; this runout can cause a rotation error amplified by feedback control system. The adaptive feedforward method based on LMS algorithm is discussed to compensate this kind of runout effects, and investigated its effectiveness by numerical simulation and experimental analysis. The rotor orbit size in both bearings is reduced about to 5 pin due to lX rejection by feedforward control up to 50, 000 rpm.

  • PDF

안쪽축이 회전하는 환형관내 천이 유동 연구 (An Study on the Transitional Flows in a Concentric Annulus with Rotating Inner Cylinder)

  • 황영규;김영주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.45-50
    • /
    • 2001
  • This experimental study concerns the characteristics of a transitional flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure losses and skin-friction coefficients have been measured for the fully developed flow of a 0.2 % aqueous solution of sodium carbomethyl cellulose (CMC) at a inner cylinder rotational speed of $0{\sim}600$ rpm. The transitional flow has been examined by the measurement of pressure losses, to reveal the relation of the Reynolds numbers with the skin-friction coefficients, in the laminar and transitional flow regimes. The occurrence of transition has been checked by the gradient change of pressure losses and skin-friction coefficient with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, it is gradually declined for turbulent flow regime. Consequently, the critical(axial-flow) Reynolds number decrease as the rotational speed increases. Thus, the rotation of inner cylinder promotes the early occurrence of transition due to the onset of taylor vortices.

  • PDF

안쪽축이 회전하는 환형관내 헬리컬 유동장의 실험적 연구 (Experimental Study on the Helical Flow Field in a Concentric Annulus with Rotating Inner Cylinders)

  • 황영규;김영주
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.822-833
    • /
    • 2000
  • This experimental study concerns the characteristics of a transitional flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure drops and skin-friction coefficients have been measured for the fully developed flow of water and that of glycerine-water solution (44%) at a inner cylinder rotational speed of $0{\sim}600$ rpm, respectively. The transitional flow has been examined by the measurement of pressure drops and the visualization of flow field, to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients and to understand the flow instability mechanism. The present results show that the skin-friction coefficients have the significant relation with the Rossby numbers, only for laminar regime. The occurrence of transition has been checked by the gradient changes of pressure drops and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, it is gradually declined for turbulent flow regime. Consequently, the critical (axial-flow) Reynolds number decreases as the rotational speed increases. Thus, the rotation of inner cylinder promotes the early occurrence of transition due to the excitation of taylor vortices.

안쪽축이 회전하는 환형관내 헬리컬 유동장의 실험적연구 (Experimental study on the helical flow field in a concentric annulus with rotating inner cylinders)

  • 황영규;김영주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.631-636
    • /
    • 2000
  • The experimental study concerns the characteristics of a transitional flow in a concentric annulus with a diameter ration of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure drops and skin-friction coefficients have been measured for the fully developed flow of water and that of glycerine-water solution (44%) at a inner cylinder rotational speed of $0{\sim}600$ rpm, respectively. The transitional flow have been examined by the measurement of pressure drops and the visualization of flow field, to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients and to understand the flow instability mechanism. The present results show that the skin-friction coefficients have the significant relation with the Rossby numbers, only for laminar regime. The occurrence of transition has been checked by the gradient changes of pressure drops and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, is gradually declined for turbulent flow regime. Consequently, the critical (axial-flow) Reynolds number decreases as the rotational speed increases. Thus, the rotation of inner cylinder promotes the early occurrence of transition due to the excitation of taylor vortices.

  • PDF

회전체 베어링계의 불균형 응답 해석을 위한 개선된 부분 구조 합성법 (An Improved Substructure Synthesis Method for Unbalance Response Analysis of Rotor Bearing Systems)

  • 홍성욱;박종혁
    • 소음진동
    • /
    • 제6권1호
    • /
    • pp.71-82
    • /
    • 1996
  • The finite element analysis for rotor bearing systems has been an essential tool for design, identification, and diagnosis of rotating machinery. Among others, the unbalance response analysis is fundamental in the vibration analysis of rotor bearing systems because rotating unbalance is recognized as a common sourve of vibration in rotating machinery. However there still remains a problem in the aspect of computational efficiency for unbalance response analysis of large rotor bearing systems. Gyroscopic terms and local bearing parameters in rotor bearing systems often make matters worse in unbalance response computation due to the complicated dynamic properties such as rotational speed dependency and/or anisotropy. The present paper proposes an efficient method for unbalance responses of multi-span rotor bearing systems. An improved substructure synthesis scheme is introduced which makes it possible to compute unbalance responses of the system by coupling unbalance responses of substructures that are of self adjoint problem with small order matrices. The present paper also suggests a scheme to easily deal with gyroscopic tems and local, coupling or bearing parameters. The proposed method causes no errors even though the computational effort is reduced drastically. The present method is demonstrated through three test examples.

  • PDF

초고속 용융 원심방사를 이용한 폴리에틸렌 마이크론 섬유의 제조 (Preparation of Polyethylene Micro-fibers by High Speed Centrifugal Melt Spinning)

  • 양성백;이정언;지병철;주남식;염정현
    • 한국염색가공학회지
    • /
    • 제32권4호
    • /
    • pp.239-244
    • /
    • 2020
  • Polyethylene (PE) micro-fiber have been prepared at different hot air temperature (60, 80 and 100 ℃) and different pressure (20, 40, 60 and 80 kPa) by melt centrifugal spinning technique. The parameters of melting centrifugal spinning including polymer contents, rotational velocity, temperature of hot air and pressure were optimized for the fabrication process. The study showed that 8000 rpm rotational velocity, 80 ℃ heated hot air and 40 kPa air pressure are the best condition to obtain uniform and strong PE fiber. The prepared PE fibers were analyzed by field emission scanning electron microscope and universal testing machine and found that fibers with reduced diameter and improved tensile strength are obtained at hot air condition.

A study on aeroelastic forces due to vortex-shedding by reduced frequency response function

  • Zhang, Xin;Qian, Zhanying;Chen, Zhen;Zeng, Fanna
    • Wind and Structures
    • /
    • 제12권1호
    • /
    • pp.63-76
    • /
    • 2009
  • The vortex-induced vibration of an ${\sqcap}$-shaped bridge deck sectional model is studied in this paper via the wind tunnel experiment. The vibratory behavior of the model shows that there is a transition of the predominant vibration mode from the vertical to the rotational degree of freedom as the wind speed increases gradually or vice versa as the wind speed decreases gradually. The vertical vibration is, however, much weaker in the latter case than in the former. This is a phenomenon which is difficult to model by existing parametric models for vortex-induced vibrations. In order to characterize the aeroelastic property of the ${\sqcap}$-shaped sectional model, a time domain force identification scheme is proposed to identify the time history of the aeroelastic forces. After the application of the proposed method, the resultant fluid forces are re-sampled in dimensionless time domain so that reduced frequency response function (RFRF) can be obtained to explore the properties of the vortex-induced wind forces in reduced frequency domain. The RFRF model is proven effective to characterize the correlation between the wind forces and bridge deck motions, thus can explain the aeroelastic behavior of the ${\sqcap}$-shaped sectional model.