• Title/Summary/Keyword: Reduced data structure

Search Result 489, Processing Time 0.025 seconds

The Impact of Electronic Data Interchange on Organization - In case of Structure and Procedure in Purchasing - (EDI의 이용이 조직에 미치는 영향에 관한 실증적 연구 - 산업별 구매부서업무의 구조와 과정을 중심으로 -)

  • Yang, Kyung-Hoon;Wang, Hong-Joon;Yoo, Hoon-Sang
    • Asia pacific journal of information systems
    • /
    • v.9 no.2
    • /
    • pp.77-97
    • /
    • 1999
  • industry each which are using a kind of EDI, supplier-oriented Electronic Data Interchange(SOEDI) to procure materials, equipment and supplies more effectively. The major objective of this study are to determine the basic nature of the impact of SOEDI on the structure and procedure in purchasing. The other is to identify the variables or determinants which influence the benefits which can be experienced in purchasing organizations. This study was conducted through interviewing of organizations which are currently active in the use of EDI. Samples of 107 purchasing organizations were collected. Some key findings of this study are ; 1) There were remarkable differences on influencing level and relationship of determinants which influence the benefits of purchasing organizations. There was the most remarkable one in trading industry. 2) The more suppliers, the more benefits. The transaction rate with suppliers who are affiliated with EDI is low as a whole but suppliers who are affiliated with EDI can be a critical factor on selection of buyers. 3) Procedure related to purchasing order was mainly changed. There is a development on signature but still exists. 4) The number of employees were reduced a little bit.

  • PDF

A Shared Channel Design for the Power and Signal Transfers of Electric-field Coupled Power Transfer Systems

  • Su, Yu-Gang;Zhou, Wei;Hu, Aiguo Patrick;Tang, Chun-Sen;Hua, Rong
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.805-814
    • /
    • 2016
  • Electric-field coupled power transfer (ECPT) systems have been proposed as an alternative wireless power transfer (WPT) technology in recent years. With the use of capacitive plates as a coupling structure, ECPT systems have many advantages such as design flexibility, reduced volume of the coupling structure and metal penetration ability. In addition, wireless communications are effective solutions to improve the safety and controllability of ECPT systems. This paper proposes a power and signal shared channel for electric-field coupled power transfer systems. The shared channel includes two similar electrical circuits with a band pass filter and a signal detection resistor in each. This is designed based on the traditional current-fed push-pull topology. An analysis of the mutual interference between the power and signal transmission, the channel power and signal attenuations, and the dynamic characteristic of the signal channel are conducted to determine the values for the electrical components of the proposed shared channel. Experimental results show that the designed channel can transfer over 100W of output power and data with a data rate from 300bps to 120 kbps.

Experimental deployment and validation of a distributed SHM system using wireless sensor networks

  • Castaneda, Nestor E.;Dyke, Shirley;Lu, Chenyang;Sun, Fei;Hackmann, Greg
    • Structural Engineering and Mechanics
    • /
    • v.32 no.6
    • /
    • pp.787-809
    • /
    • 2009
  • Recent interest in the use of wireless sensor networks for structural health monitoring (SHM) is mainly due to their low implementation costs and potential to measure the responses of a structure at unprecedented spatial resolution. Approaches capable of detecting damage using distributed processing must be developed in parallel with this technology to significantly reduce the power consumption and communication bandwidth requirements of the sensor platforms. In this investigation, a damage detection system based on a distributed processing approach is proposed and experimentally validated using a wireless sensor network deployed on two laboratory structures. In this distributed approach, on-board processing capabilities of the wireless sensor are exploited to significantly reduce the communication load and power consumption. The Damage Location Assurance Criterion (DLAC) is used for localizing damage. Processing of the raw data is conducted at the sensor level, and a reduced data set is transmitted to the base station for decision-making. The results indicate that this distributed implementation can be used to successfully detect and localize regions of damage in a structure. To further support the experimental results obtained, the capabilities of the proposed system were tested through a series of numerical simulations with an expanded set of damage scenarios.

Backbone NMR Assignments of a Prokaryotic Molecular Chaperone, Hsp33 from Escherichia coli

  • Lee, Yoo-Sup;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.2
    • /
    • pp.172-184
    • /
    • 2012
  • The prokaryotic molecular chaperone Hsp33 achieves its holdase activity upon response to oxidative stress particularly at elevated temperature. Despite many structural studies of Hsp33, which were conducted mainly by X-ray crystallography, the actual structures of the Hsp33 in solution remains controversial. Thus, we have initiated NMR study of the reduced, inactive Hsp33 monomer and backbone NMR assignments were obtained in the present study. Based on a series of triple resonance spectra measured on a triply isotope-[$^2H/^{13}C/^{15}N$]-labeled protein, sequence-specific assignments of the backbone amide signals observed in the 2D-[$^1H/^{15}N$]TROSY spectrum could be completed up to more than 96%. However, even considering the small portion of non-assigned resonances due to the lack of sequential connectivity, we confirmed that the total number of observed signals was quite smaller than that expected from the number of amino acid residues in Hsp33. Thus, it is postulated that peculiar dynamic properties would be involved in the solution structure of the inactive Hsp33 monomer. We expect that the present assignment data would eventually provide the most fundamental and important data for the progressing studies on the 3-dimensional structure and molecular dynamics of Hsp33, which are critical for understanding its activation process.

cdma2000 Physical Layer: An overview

  • Willenegger, Serge
    • Journal of Communications and Networks
    • /
    • v.2 no.1
    • /
    • pp.5-17
    • /
    • 2000
  • cdma2000 offers several enhancement as compared to TIA/EIA-95, although it remains fully compatible with TIA/EIA-95 systems and allows for a smooth migration from one to the other-Major new capability include:1)connectivity to GSM-MAP in addition to IP and IS-41 networks; 2) new layering with new LAC and MAC architectures for improved service multiplexing and QoS management and efficient use of radio resource ;3) new bands and band widths of operation in support of various operator need and constraints, as well as desire for a smooth and progressive migration to cdma 2000; and 4) flexible channel structure in support of multiple services with various QoS and variable transmission rates at up to 1 Mbps per channel and 2 Mbps per user. Given the phenomenal success of wireless services and desire for higher rate wireless services. improved spectrum efficiency was a major design goal in the elaboration of cdma2000. Major capacity enhancing features include; 1) turbo coding for data transmission: 2)fast forward link power control :3) forward link transmit diversity; 4) support of directive antenna transmission techniques; 5) coherent reverse link structure; and 6) enhanced access channel operation. As users increasingly rely on their cell phone at work and at home for voice and data exchange, the stand-by time and operation-time are essential parameters that can influence customer's satisfaction and service utilization. Another major goal of cdma2000 was therefore to enable manufacturers to further optimize power utilization in the terminal. Major battery life enhancing features include; 1) improved reverse link performance (i.e., reduced transmit power per information bit; 2) new common channel structure and operation ;3) quick paging channel operation; 4) reverse link gated transmission ; and 5) new MAC stated for efficient and ubiquitous idle time idle time operation. this article provides additional details on those enhancements. The intent is not to duplicate the detailed cdma2000 radio access network specification, but rather to provide some background on the new features of cdma2000 and on the qualitative improvements as compared to the TIA/EIA-95 based systems. The article is focused on the physical layer structure and associated procedures. It therefore does not cover the MAC, LAC, radio resource management [1], or any other signaling protocols in any detail. We assume some familiarity with the basic CDMA concepts used in TIA/EIA-95.

  • PDF

Finite element model calibration of a steel railway bridge via ambient vibration test

  • Arisoy, Bengi;Erol, Osman
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.327-335
    • /
    • 2018
  • This paper presents structural assessment of a steel railway bridge for current condition using modal parameter to upgrade finite element modeling in order to gather accurate result. An adequate monitoring, such as acceleration, displacement, strain monitoring, is important tool to understand behavior and to assess structural performance of the structure under surround vibration by means of the dynamic analysis. Evaluation of conditions of an existing steel railway bridge consist of 4 decks, three of them are 14 m, one of them is 9.7 m, was performed with a numerical analysis and a series of dynamic tests. Numerical analysis was performed implementing finite element model of the bridge using SAP2000 software. Dynamic tests were performed by collecting acceleration data caused by surrounding vibrations and dynamic analysis is performed by Operational Modal Analysis (OMA) using collected acceleration data. The acceleration response of the steel bridge is assumed to be governing response quantity for structural assessment and provide valuable information about the current statute of the structure. Modal identification determined based on response of the structure play significant role for upgrading finite element model of the structure and helping structural evaluation. Numerical and experimental dynamic properties are compared and finite element model of the bridge is updated by changing of material properties to reduce the differences between the results. In this paper, an existing steel railway bridge with four spans is evaluated by finite element model improved using operational modal analysis. Structural analysis performed for the bridge both for original and calibrated models, and results are compared. It is demonstrated that differences in natural frequencies are reduced between 0.2% to 5% by calibrating finite element modeling and stiffness properties.

An Improved Index Structure for the Flash Memory Based F2FS File System

  • Kim, Yong-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.1-8
    • /
    • 2022
  • As an efficient file system for SSD(Solid State Drive), F2FS is employed in the kernel of Linux operating system. F2FS applies various methods to improve performance by reflecting the characteristics of flash memory. One of them is improvement of the index structure that contains addresses of data blocks for each file. This paper presents a method for further improving performance by modifying the index structure of F2FS. F2FS manages all index blocks as logical numbers, and an address mapping table is used to find the physical block addresses of index blocks on flash memory. This paper shows performance improvement by applying logical numbers to the last level index blocks only. The count of mapping table search for a data block access is reduced to 1~2 from 1~4.

Effects of generalized-Born implicit solvent models in NMR structure refinement

  • Jee, Jun-Goo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • Rapid advances of computational power and method have made it practical to apply the time-consuming calculations with all-atom force fields and sophisticated potential energies into refining NMR structure. Added to the all-atom force field, generalized-Born implicit solvent model (GBIS) contributes substantially to improving the qualities of the resulting NMR structures. GBIS approximates the effects that explicit solvents bring about even with fairly reduced computational times. Although GBIS is employed in the final stage of NMR structure calculation with experimental restraints, the effects by GBIS on structures have been reported notable. However, the detailed effect is little studied in a quantitative way. In this study, we report GBIS refinements of ubiquitin and GB1 structures by six GBIS models of AMBER package with experimental distance and backbone torsion angle restraints. Of GBIS models tested, the calculations with igb=7 option generated the closest structures to those determined by X-ray both in ubiquitin and GB1 from the viewpoints of root-mean-square deviations. Those with igb=5 yielded the second best results. Our data suggest that the degrees of improvements vary under different GBIS models and the proper selection of GBIS model can lead to better results.

Effects of Isolation Period Difference and Beam-Column Stiffness Ratio on the Dynamic Response of Reinforced Concrete Buildings

  • Chun, Young-Soo;Hur, Moo-Won
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.439-451
    • /
    • 2015
  • This study analyzed the isolation effect for a 15-story reinforced concrete (RC) building with regard to changes in the beam-column stiffness ratio and the difference in the vibration period between the superstructure and an isolation layer in order to provide basic data that are needed to devise a framework for the design of isolated RC buildings. First, this analytical study proposes to design RC building frames by securing an isolation period that is at least 2.5 times longer than the natural vibration period of a superstructure and configuring a target isolation period that is 3.0 s or longer. To verify the proposed plan, shaking table tests were conducted on a scaled-down model of 15-story RC building installed with laminated rubber bearings. The experimental results indicate that the tested isolated structure, which complied with the proposed conditions, exhibited an almost constant response distribution, verifying that the behavior of the structure improved in terms of usability. The RC building's response to inter-story drift (which causes structural damage) was reduced by about one-third that of a non-isolated structure, thereby confirming that the safety of such a superstructure can be achieved through the building's improved seismic performance.

Optical Properties and Structural Characteristics of Gallium Nitride Thin Films Prepared by Radio Frequency Magnetron Sputtering

  • Cho, Yeon Ki;Kim, Joo Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.248.2-248.2
    • /
    • 2014
  • In this study, the optical properties and structural characteristics of gallium nitride (GaN) thin films prepared by radio frequency (RF) magnetron sputtering were investigated. Auger electron and X-ray photoelectron spectra showed that the deposited films consisted mainly of gallium and nitrogen. The presence of oxygen was also observed. The optical bandgap of the GaN films was measured to be approximately 3.31 eV. The value of the refractive index of the GaN films was found to be 2.36 at a wavelength of 633 nm. X-ray diffraction data revealed that the crystalline phase of the deposited GaN films changed from wurtzite to zinc-blende phase upon decreasing the sputtering gas pressure. Along with the phase change, a strong dependence of the microstructure of the GaN films on the sputtering gas pressure was also observed. The microstructure of the GaN films changed from a voided columnar structure having a rough surface to an extremely condensed structure with a very smooth surface morphology as the sputtering gas pressure was reduced. The relationship between the phase and microstructure changes in the GaN films will be discussed.

  • PDF